Abstract:
One method of processing microphone input in an ADC to determine microphone configuration is to process the microphone input signals in two processing paths, in which one processing path processes a difference between differential input signals and another processing path processes an average value of the differential input signals. The outputs of these processing paths may be combined to generate a digital signal representative of the analog signal from the microphone. The digital signal contains a digital version of the audio in the environment around the microphone, but may also be used to detect microphone topology and configure aspects of the processing paths to match the detected microphone topology. An apparatus for an ADC may implement the two processing paths as two delta-sigma modulator loops.
Abstract:
An analog-to-digital converter (ADC) may include capability to sense and/or compensate for undesired effects when receiving input from a microphone. For example, a sense node may be provided between differential inputs, and that sense node separated from the differential inputs by two or more switches. The sense node may allow for a measurement of an average voltage of the differential inputs. The average voltage may be obtained activating the switches to sample the sampling capacitors coupled to the differential inputs. That average voltage may be used as common mode (CM) data. A controller may receive the CM data, along with differential mode (DM) data, and use the CM and DM data to determine undesired effects, such as DC or AC mismatch at the microphone interface. The controller may then generate a signal for applying compensation to the differential inputs to reduce or eliminate the undesired effects.
Abstract:
One method of processing microphone input in an ADC to determine microphone configuration is to process the microphone input signals in two processing paths, in which one processing path processes a difference between differential input signals and another processing path processes an average value of the differential input signals. The outputs of these processing paths may be combined to generate a digital signal representative of the analog signal from the microphone. The digital signal contains a digital version of the audio in the environment around the microphone, but may also be used to detect microphone topology and configure aspects of the processing paths to match the detected microphone topology. An apparatus for an ADC may implement the two processing paths as two delta-sigma modulator loops.
Abstract:
The overall performance of a dual-path ADC system may be improved by using a VCO-based ADC for small-amplitude signals and employing non-linear cancellation to remove nonlinearities in signals output by the VCO-based ADC. In particular, VCO-based dual-path ADC systems of this disclosure may be configured to receive a first digital signal from a first ADC and a second digital signal from a second ADC, wherein the second digital signal is more non-linear than the first digital signal. The dual-path systems may also be configured to determine one or more non-linear coefficients of the second digital signal based, at least in part, on processing of the first and second digital signals. The dual-path systems may be further configured to modify the second digital signal based, at least in part, on the determined one or more non-linear coefficients to generate a more linear second digital signal.
Abstract:
The dynamic range and power efficiency of a voice-activated system may be improved by dynamically adjusting the configuration of the voice-activated system's input path. In one embodiment, a first portion of audio may be received through an input path of the voice-activated system having a first configuration. A characteristic of the first portion of audio may be determined and the input path may be adjusted to a second configuration based on the determined characteristic. A second portion of audio may then be received through the input path having the second configuration, and speech analysis may be performed on the second portion of audio.
Abstract:
The dynamic range and power efficiency of a voice-activated system may be improved by dynamically adjusting the configuration of the voice-activated system's input path. In one embodiment, a first portion of audio may be received through an input path of the voice-activated system having a first configuration. A characteristic of the first portion of audio may be determined and the input path may be adjusted to a second configuration based on the determined characteristic. A second portion of audio may then be received through the input path having the second configuration, and speech analysis may be performed on the second portion of audio.
Abstract:
A circuit for a divider or counter may include a frequency divider having multiple rings for dividing an input frequency to obtain an output frequency. The first and second rings may include an odd-numbered plurality of elements, such as inverters, wherein each inverter of a ring is coupled to another inverter of the ring in a circular chain. An input frequency may be input to a power supply input of inverters of the first ring. The second ring inverters may be coupled at a power supply input to output nodes of the first ring inverters, which results in the second ring operating at a divisional rate of the first frequency given by (N−1), where N is the number of inverters in the ring. The circuits may be used in frequency dividers and counters, such as in phase-locked loops (PLLs) and analog-to-digital converters (ADCs).
Abstract:
A delta-sigma modulation analog-to-digital converter (ADC) may be constructed by combining a VCO used for a first order filter with a digital loop filter used for a second or higher order of the ADC. One such ADC would include an analog input node configured to receive an analog signal; a voltage-controlled oscillator (VCO) comprising a first input configured to receive the analog signal, wherein the voltage-controlled oscillator is configured to implement a first order noise-shaping function; a digital loop filter comprising a second input configured to receive an output of the voltage-controlled oscillator (VCO); and a digital output node configured to output a digital signal based on an output of the digital loop filter. The digital loop filter may be configured to implement at least a first order noise-shaping function, but may also implement higher order noise-shaping functions.
Abstract:
An analog-to-digital converter (ADC) may include capability to sense and/or compensate for undesired effects when receiving input from a microphone. For example, a sense node may be provided between differential inputs, and that sense node separated from the differential inputs by two or more switches. The sense node may allow for a measurement of an average voltage of the differential inputs. The average voltage may be obtained activating the switches to sample the sampling capacitors coupled to the differential inputs. That average voltage may be used as common mode (CM) data. A controller may receive the CM data, along with differential mode (DM) data, and use the CM and DM data to determine undesired effects, such as DC or AC mismatch at the microphone interface. The controller may then generate a signal for applying compensation to the differential inputs to reduce or eliminate the undesired effects.
Abstract:
A circuit for a divider or counter may include a frequency divider having multiple rings for dividing an input frequency to obtain an output frequency. The first and second rings may include an odd-numbered plurality of elements, such as inverters, wherein each inverter of a ring is coupled to another inverter of the ring in a circular chain. An input frequency may be input to a power supply input of inverters of the first ring. The second ring inverters may be coupled at a power supply input to output nodes of the first ring inverters, which results in the second ring operating at a divisional rate of the first frequency given by (N−1), where N is the number of inverters in the ring. The circuits may be used in frequency dividers and counters, such as in phase-locked loops (PLLs) and analog-to-digital converters (ADCs).