摘要:
A structure and method of fabrication of a capacitor and other devices by providing a semiconductor structure and providing a top insulating layer and conductive features over the semiconductor structure; forming a first conductive layer over the top insulating layer; patterning the first conductive layer to form at least a capacitor bottom plate and a first portion of the first conductive layer; forming a capacitor dielectric layer over the top insulating layer and the capacitor bottom plate and the first portion of the first conductive layer; forming a second conductive layer over the capacitor dielectric layer; and patterning the second conductive layer to form at least a top plate over the bottom plate and a first section of the second conductive layer on the capacitor dielectric layer. The embodiment can further comprise conductive features in the top insulating layer that can underlie the bottom plate, the first portion or/and the first section. The first portion and the first section can form resistors, capacitors or other devices.
摘要:
In one embodiment, the present invention recites forming a number of first openings in a first substrate. The present embodiment then recites forming a copper region within each first openings during a damascene process, wherein each copper region has a top surface. The present embodiment then disposes a dielectric layer proximate to the top surface of each of the first copper regions during the damascene process. After depositing a second substrate over the dielectric, a number of second openings in a second substrate are made. Next, a number of second copper regions are formed in the second openings, during the damascene process. The dielectric region is thus disposed between the first copper regions and the second copper regions. In so doing, the dielectric region forms a dielectric barrier between the first copper regions and the second copper regions such that a metal-insulator-metal (MIM) capacitor is formed during a damascene process.
摘要:
A method for fabricating an increased capacitance metal-insulator-metal capacitor using an integrated copper dual damascene process is described. A first dual damascene opening and a pair of second dual damascene openings are provided in a first dielectric layer overlying a substrate. The first and second dual damascene openings are filled with a first copper layer wherein the filled first dual damascene opening forms a logic interconnect and the filled pair of second dual damascene openings forms a pair of capacitor electrodes. The first dielectric layer is etched away between the pair of capacitor electrodes leaving a space between the pair of capacitor electrodes. The space between the pair of capacitor electrodes is filled with a high dielectric constant material to complete fabrication of a vertical MIM capacitor in the fabrication of an integrated circuit device. The fabrication of the capacitor can begin at any metal layer. The process of the invention can be extended to form a parallel capacitor, a series capacitor, stacked capacitors, and so on.
摘要:
In one method embodiment, the present invention recites forming an opening in a substrate during a damascene process. The present embodiment then recites forming a dielectric region having two curvilinear surfaces opposite one another at least partially within the opening during the damascene process. The surfaces are curvilinear with respect to a horizontal cross-section. The present embodiment then recites forming a first copper region having a curvilinear surface proximate one of the surfaces of the dielectric region during the damascene process. The present embodiment then recites forming a second copper region having a curvilinear surface proximate a second surface of the dielectric region during the damascene process. In so doing, the dielectric region forms a dielectric barrier between the first copper region and the second copper region such that the vertical cylindrical MIM capacitor is formed.
摘要:
An improved process for fabricating simultaneously high capacitance, less than 0.13 micron metal-insulator-metal capacitors, metal resistors and metal interconnects, has been developed using single or dual damascene processing. The key advantage is the use of only one additional mask reticle to form both MIM capacitor and resistor, simultaneously. Several current obstacles that exist in BEOL, back end of line, are overcome, namely: (a) the use of two or more photo-masks to make
摘要:
A method for making concurrently metal-insulator-metal (MIM) capacitors and a metal resistors in a Cu damascene back-end-of-line process is achieved. The method forms a Cu capacitor bottom metal plate using a dual-damascene process. A Si3N4 or SiC is deposited to form a capacitor dielectric layer on the Cu bottom plate. A metal layer having an upper etch-stop layer is deposited and patterned to form concurrently capacitor top plates and metal resistors. The patterning is terminated in the capacitor dielectric layer to prevent Cu particle contamination. An insulating layer is deposited and via holes are etched to the capacitor top plates and the metal resistors using the upper etch-stop layer to prevent overetching and damage. The method provides a MIM capacitor using only one additional photoresist mask while improving process yield.
摘要翻译:实现了一种在金铜绝缘体金属(MIM)电容器和金属电阻器Cu铜镶嵌后端工艺中的制造方法。 该方法使用双镶嵌工艺形成Cu电容器底部金属板。 沉积Si 3 N 4或SiC以在Cu底板上形成电容器电介质层。 具有上蚀刻停止层的金属层被沉积并图案化以形成电容器顶板和金属电阻器。 图案化终止在电容器电介质层中以防止Cu颗粒污染。 沉积绝缘层,并且使用上蚀刻停止层将电容器顶板和金属电阻器的通孔蚀刻以防止过蚀刻和损坏。 该方法提供了仅使用一种附加光致抗蚀剂掩模的MIM电容器,同时提高了工艺产量。
摘要:
In one method embodiment, the present invention recites forming an opening in a substrate during a damascene process. The present embodiment then recites forming a dielectric region having two curvilinear surfaces opposite one another at least partially within the opening during the damascene process. The surfaces are curvilinear with respect to a horizontal cross-section. The present embodiment then recites forming a first copper region having a curvilinear surface proximate one of the surfaces of the dielectric region during the damascene process. The present embodiment then recites forming a second copper region having a curvilinear surface proximate a second surface of the dielectric region during the damascene process. In so doing, the dielectric region forms a dielectric barrier between the first copper region and the second copper region such that the vertical cylindrical MIM capacitor is formed.
摘要:
A new method for forming a dual-metal gate CMOS transistors is described. An NMOS and a PMOS active area of a semiconductor substrate are separated by isolation regions. A nitride layer is deposited overlying a gate dielectric layer and patterned to form a first dummy gate in each of the active areas. First ions are implanted to form source/drain regions in each of the active areas not covered by the first dummy gates. The first dummy gates are isotropically etched to form second dummy gates thinner than the first dummy gates. Second ions are implanted to form lightly doped source/drain regions in each of the active areas not covered by the second dummy gates. Dielectric spacers are formed on sidewalls of the second dummy gates and the source/drain regions are silicided. A dielectric layer is deposited and planarized to the second dummy gates. Thereafter, the second dummy gates are removed, leaving gate openings in the dielectric layer. A mask is formed over the PMOS active area. A first metal layer is deposited in the gate opening in the NMOS active area and planarized to the mask. The mask is removed. A second metal layer is deposited in the gate opening in the PMOS active area. The first and second metal layers are polished away to the dielectric layer thereby completing formation of dual-metal gate CMOS transistors in the fabrication of an integrated circuit.
摘要:
A method of manufacture of an integrated circuit system includes: providing a substrate including front-end-of-line circuitry; forming a first group of metal layers including a first finger and a second finger over the substrate utilizing a first design rule, the first group of metal layers being formed without a finger via; forming a second group of metal layers including a first finger, a second finger, and a finger via over the first group of metal layers utilizing a second design rule that is larger than the first design rule; and interconnecting the first group of metal layers with the second group of metal layers to form a capacitor.
摘要:
An improved method to deposit, by atomic layer deposition, ALD, a copper barrier and seed layer for electroless copper plating, filling trench and channel or tunnel openings in a damascene process, for the fabrication of interconnects and inductors, has been developed. A process flow outlining the method of the present invention is as follows: (1) formation of trenches and channels, (2) atomic layer deposition of copper barrier and seed, (3) electroless deposition of copper, (4) chemical mechanical polishing back of excess copper, and (5) barrier deposition, SiN, forming copper interconnects and inductors.