Abstract:
A method for structuring a steel embossing roller surface includes using a short pulse laser including at least one of a femtosecond laser and a picosecond laser. The structuring is macrostructuring with dimensions of over 20 μm and depths up to 150 μm and more. The short pulse laser has: in single pulse operation, a fluence in the range of 0.5 J/cm2 to 3.5 J/cm2, and in burst operation, a mean burst fluence of 0.5 J/cm2 to 70 J/cm2 per pulse; a wavelength of 532 nm to 1064 nm; a repetition rate of 1 kHz to 10 MHz; a pulse to pulse spacing on the roller of 10% to 50% of the beam diameter for the femtosecond laser and of 10-25% and 40-50% of the beam width for the picosecond laser; a laser pulse position near the roller surface; and deflection velocities of up to 100 m/s and more.
Abstract:
In the method for structuring at least one area of a solid body surface provided with a ta-C coating, by means of a first laser, preferably an excimer laser having pulse durations in the nanosecond range, a first structure is produced upon which a second, ripple-like structure is superposed by means of a second laser, preferably having pulse durations in the femtosecond range. Preferentially, the excimer laser structuring is carried out according to the mask projection technique and the femtosecond laser structuring according to the focus technique. This method allows the rational manufacture of very complex, extremely fraud-resistant authentication features and/or of esthetically attractive, optical diffraction effective colored patterns.
Abstract:
The device for embossing and/or calendering foils comprises at least one first and one second embossing roll between the flat material is passed under pressure in order to produce a pattern. The second embossing roll is followed by at least another embossing roll which cooperates with the first or the preceding embossing roll and between which the patterned flat material is passed in order to receive essentially the same pattern in a re-embossing procedure. In the case of complex treatments, it is advantageous to synchronize the embossing rolls. Particularly in the case of paper having a thin metallization, the following additional embossing roll which re-embosses the pattern allows to avoid higher contact pressures causing increased wear, and a substantially improved folding behavior is obtained.
Abstract:
Two rolls, more particularly embossing rolls are provided which are pressed against each other by pneumatic cylinders for the purpose of fashioning a flat material passing between the rolls. The ends of one of the roll axles are journalled in slides which are actuatable by the cylinders in such a manner as to be deflectable in the pressure direction and in the travelling direction of the material. The elastically suspended roll is thus capable of automatically adjusting itself in such a manner that the axles of the two rolls can adjust to irregularities of the flat material and thus allow a disturbance-free and qualitatively optimal treatment of the material.
Abstract:
In the method for producing masks and/or diaphragms for a laser installation for the creation of microstructures on a solid body surface according to the mask projection technique, predetermined opaque surface portions which scatter the laser radiation are produced in the mask and/or diaphragm substrate by roughening and modifying the latter by means of a femtosecond, picosecond or fluor laser beam. Such masks and diaphragms have a strongly improved lifetime and accuracy and may e.g. serve for the creation of blazed gratings which, arranged in diffraction grating arrays on a solid body surface, serve for producing spectral colors and mixed colors of high brilliance.
Abstract:
The foil embossing device comprises an embossing roller and two counter-rollers, one of the rollers being driven by a drive and the rollers having a configuration where the teeth, rings, or ridges project from the base cylinder, at least the embossing roller having teeth that project from the base cylinder and at least partly also serve for driving the counter-roller. To increase the uniformity of the embossing of the foil, the embossing roller has a diameter that is reduced by 0.02 to 0.20 mm over a certain length that is at least the same as the width of the foil. The length of the reduced diameter is preferably chosen so as to exceed the width of the foil being printed. Due to this depression, such a device allows a perfectly uniform embossing of foils of any kind independently of the design of the embossing rollers.
Abstract:
In the method for producing a package for bar-shaped smoking articles that has at least one outer layer intended to receive the bar-shaped smoking articles and to hold the package together, a foil strip that is suitable for the outer layer and is taken from a reel is embossed and/or provided with creasing breaks online in time with the work cadence (P) of the packaging machine and subsequently cut to size. The resulting blank is then folded around the bar-shaped smoking articles in the packaging machine. On one hand, this method allows packaging the cigarettes directly in the outer wrapper without an innerliner, and on the other hand, to strongly rationalize and simplify the entire packaging process and to apply a large variety of signs of all kinds that are perceptible visually, tactually, acoustically or by olfaction.
Abstract:
The device for satinizing and embossing packaging foils comprises at least two embossing rollers that are each provided with a toothing consisting of individual teeth, the pyramidal teeth having an essentially rectangular horizontal projection, and the sides of the teeth being essentially parallel and perpendicular, respectively, to the longitudinal axis of the embossing roller. In contrast to the prior art, the opening angle (α) between the radially aligned adjacent tooth flanks is smaller than the opening angle (β) between the axially aligned adjacent tooth flanks, and the tooth height in the radial direction, measured from the tooth tip to the tooth bottom, is greater than the tooth height in the axial direction measured from the tooth tip to the tooth bottom. This dimensioning and arrangement of the teeth provides an improved gearing with a reduced specific pressure as well as an improved processing of the paper part of the foil that results in its better folding, curling, and tubing behavior.
Abstract:
The foil embossing device comprises an embossing roller and two counter-rollers, one of the rollers being driven by a drive and the rollers having a configuration where the teeth, rings, or ridges project from the base cylinder, at least the embossing roller having teeth that project from the base cylinder and at least partly also serve for driving the counter-roller. To increase the uniformity of the embossing of the foil, the embossing roller has a diameter that is reduced by 0.02 to 0.20 mm over a certain length that is at least the same as the width of the foil. The length of the reduced diameter is preferably chosen so as to exceed the width of the foil being printed. Due to this depression, such a device allows a perfectly uniform embossing of foils of any kind independently of the design of the embossing rollers.
Abstract:
In the method for the authentication of identification features that are embossed on a packaging foil together with satin-finishing and the embossing of logos, a number of identification features is embossed on-line as a pattern and read by a suitable apparatus and evaluated by means of an image evaluation method.The embossing device (1) suitable therefor includes at least two embossing rollers (2, 3, 15), a reading unit, and an evaluating unit, one of the embossing rollers (2) being driven by the motor drive mechanism (5) and having individual teeth (8) of which a number of teeth for embossing identification features have a different shape, height, or surface structure while the remaining teeth serve for satin-finishing, and one of the mating rollers (3) being provided with circumferential rings (10).Such a method and such a device allow a relatively simpler embossing device with relatively lower requirements with regard to the embossing quality than in methods of the prior art.