摘要:
High-quality surface coatings, and techniques combining the atomic precision of molecular beam epitaxy and atomic layer deposition, to fabricate such high-quality surface coatings are provided. The coatings made in accordance with the techniques set forth by the invention are shown to be capable of forming silicon CCD detectors that demonstrate world record detector quantum efficiency (>50%) in the near and far ultraviolet (155 nm-300 nm). The surface engineering approaches used demonstrate the robustness of detector performance that is obtained by achieving atomic level precision at all steps in the coating fabrication process. As proof of concept, the characterization, materials, and exemplary devices produced are presented along with a comparison to other approaches.
摘要:
A filter for electromagnetic radiation including one or more dielectric spacer regions and one or more reflective regions integrated on a semiconductor substrate, the semiconductor substrate including a semiconductor photodetector, such that the filter transmits ultraviolet radiation to the semiconductor photodetector, the ultraviolet radiation having a range of wavelengths, and the filter suppresses transmission of electromagnetic radiation, having wavelengths outside the range of wavelengths, to the semiconductor photodetector.
摘要:
A filter for electromagnetic radiation including one or more dielectric spacer regions and one or more reflective regions integrated on a semiconductor substrate, the semiconductor substrate including a semiconductor photodetector, such that the filter transmits ultraviolet radiation to the semiconductor photodetector, the ultraviolet radiation having a range of wavelengths, and the filter suppresses transmission of electromagnetic radiation, having wavelengths outside the range of wavelengths, to the semiconductor photodetector.
摘要:
High-quality surface coatings, and techniques combining the atomic precision of molecular beam epitaxy and atomic layer deposition, to fabricate such high-quality surface coatings are provided. The coatings made in accordance with the techniques set forth by the invention are shown to be capable of forming silicon CCD detectors that demonstrate world record detector quantum efficiency (>50%) in the near and far ultraviolet (155 nm-300 nm). The surface engineering approaches used demonstrate the robustness of detector performance that is obtained by achieving atomic level precision at all steps in the coating fabrication process. As proof of concept, the characterization, materials, and exemplary devices produced are presented along with a comparison to other approaches.