Atomically precise surface engineering for producing imagers

    公开(公告)号:US10541266B2

    公开(公告)日:2020-01-21

    申请号:US14829238

    申请日:2015-08-18

    IPC分类号: H01L27/146

    摘要: High-quality surface coatings, and techniques combining the atomic precision of molecular beam epitaxy and atomic layer deposition, to fabricate such high-quality surface coatings are provided. The coatings made in accordance with the techniques set forth by the invention are shown to be capable of forming silicon CCD detectors that demonstrate world record detector quantum efficiency (>50%) in the near and far ultraviolet (155 nm-300 nm). The surface engineering approaches used demonstrate the robustness of detector performance that is obtained by achieving atomic level precision at all steps in the coating fabrication process. As proof of concept, the characterization, materials, and exemplary devices produced are presented along with a comparison to other approaches.

    ATOMICALLY PRECISE SURFACE ENGINEERING FOR PRODUCING IMAGERS
    4.
    发明申请
    ATOMICALLY PRECISE SURFACE ENGINEERING FOR PRODUCING IMAGERS 审中-公开
    用于生产图像的原始精密表面工程

    公开(公告)号:US20160005786A1

    公开(公告)日:2016-01-07

    申请号:US14829238

    申请日:2015-08-18

    IPC分类号: H01L27/146

    摘要: High-quality surface coatings, and techniques combining the atomic precision of molecular beam epitaxy and atomic layer deposition, to fabricate such high-quality surface coatings are provided. The coatings made in accordance with the techniques set forth by the invention are shown to be capable of forming silicon CCD detectors that demonstrate world record detector quantum efficiency (>50%) in the near and far ultraviolet (155 nm-300 nm). The surface engineering approaches used demonstrate the robustness of detector performance that is obtained by achieving atomic level precision at all steps in the coating fabrication process. As proof of concept, the characterization, materials, and exemplary devices produced are presented along with a comparison to other approaches.

    摘要翻译: 提供高质量的表面涂层以及结合分子束外延原子精度和原子层沉积的技术,以制造这种高质量的表面涂层。 根据本发明提出的技术制成的涂层被证明能够形成在近紫外(155nm-300nm)的世界记录检测器量子效率(> 50%)的硅CCD检测器。 使用的表面工程方法证明了通过在涂层制造过程中的所有步骤实现原子级精度而获得的检测器性能的鲁棒性。 作为概念证明,产生的表征,材料和示例性设备与其他方法的比较一起呈现。