Abstract:
A filter monitoring system and method are described. The filter monitoring system includes a remote telematics system, and a data link between the remote telematics system and an onboard telematics system. The remote telematics system is configured to receive, via the data link, an indication of a pressure drop across a filter cartridge of the filtration system from the onboard telematics system, determine a first value indicative of a remaining filter life of the filter cartridge of the filtration system, determine a second value indicative of a remaining filter life of the filter cartridge that is determined in a different manner than the first value, compare the first value to the second value to determine which value indicates a least amount of life remaining for the filter cartridge, and transmit an indication of the least amount of life remaining for the filter cartridge based on the comparison.
Abstract:
A system and method for monitoring the negative impact of a filtration system on the fuel economy of an internal combustion engine. A filter monitoring controller receives engine operating parameters of the internal combustion engine. The filter monitoring controller determines an amount of power generated by the internal combustion engine based at least in part on the engine operating parameters. The filter monitoring controller determines a filter hydraulic power consumption of a filtration system providing a fluid to the internal combustion engine. The filter monitoring controller determines a fuel economy impact of the filtration system on the internal combustion engine based at least in part on the filter hydraulic power consumption of the filtration system. The filter monitoring controller compares the fuel economy impact of the filtration system to a threshold fuel economy impact to determine whether a filter element of the filtration system requires servicing.
Abstract:
A no filter no run (NFNR) fluid filter and fluid filter assembly are provided. The NFNR fluid filter assembly includes a fluid filter, a filter head or filter housing, and a bypass flow path. The bypass flow path may be sealed off when a compliant filter is installed. When a non-compliant filter is installed (a filter without a bypass seal), fluid may flow to the bypass flow path.
Abstract:
A no filter no run (NFNR) fluid filter and fluid filter assembly are provided. The NFNR fluid filter assembly includes a fluid filter, a filter head or filter housing, and a bypass flow path. The by-pass flow path may be sealed off when a compliant filter is installed (a filter without a bypass seal), fluid may flow to the bypass flow path.
Abstract:
Systems and methods for determining whether an authorized or genuine filter element is installed in a filtration system are described. The authorized filter determination may be based on radio frequency identification (“RFID”) technology. RFID readers with antennas in the monitored filter systems read the RFID tag information from the installed filter elements and feed any detected information into the filter monitoring system. The filter monitoring system or a remote diagnostic system analyzes the returned data (or absence thereof) to determine if a genuine (i.e., authorized, OEM approved, etc.) filter element is installed or not.
Abstract:
A no filter no run (NFNR) fluid filter and fluid filter assembly are provided. The NFNR fluid filter assembly includes a fluid filter, a filter head or filter housing, and a bypass flow path. The bypass flow path may be sealed off when a compliant filter is installed. When a non-compliant filter is installed (a filter without a bypass seal), fluid may flow to the bypass flow path.
Abstract:
A no filter no run (NFNR) fluid filter and fluid filter assembly are provided. The NFNR fluid filter assembly includes a fluid filter, a filter head or filter housing, and a bypass flow path. The bypass flow path may be sealed off when a compliant filter is installed. When a non-compliant filter is installed (a filter without a bypass seal), fluid may flow to the bypass flow path.
Abstract:
A system and method for monitoring the negative impact of a filtration system on the fuel economy of an internal combustion engine. A filter monitoring controller receives engine operating parameters of the internal combustion engine. The filter monitoring controller determines an amount of power generated by the internal combustion engine based at least in part on the engine operating parameters. The filter monitoring controller determines a filter hydraulic power consumption of a filtration system providing a fluid to the internal combustion engine. The filter monitoring controller determines a fuel economy impact of the filtration system on the internal combustion engine based at least in part on the filter hydraulic power consumption of the filtration system. The filter monitoring controller compares the fuel economy impact of the filtration system to a threshold fuel economy impact to determine whether a filter element of the filtration system requires servicing.
Abstract:
A filter monitoring system and method are described. The filter monitoring system includes a remote telematics system, and a data link between the remote telematics system and an onboard telematics system. The remote telematics system is configured to receive, via the data link, an indication of a pressure drop across a filter cartridge of the filtration system from the onboard telematics system, determine a first value indicative of a remaining filter life of the filter cartridge of the filtration system, determine a second value indicative of a remaining filter life of the filter cartridge that is determined in a different manner than the first value, compare the first value to the second value to determine which value indicates a least amount of life remaining for the filter cartridge, and transmit an indication of the least amount of life remaining for the filter cartridge based on the comparison.
Abstract:
Systems and methods for determining, using service component authenticity detection contained in a sensor module, whether an authorized or genuine service component element is installed in an automotive system are described. The authorized service component determination may be based on close-range communication technology such as radio frequency identification (“RFID”) technology. An antenna in the sensor module may read the tag information from installed service component elements in a nearby service component and send any detected information into a filtration monitoring system. The filtration monitoring system or a remote diagnostic system analyzes the returned data (or absence thereof) to determine if a genuine (i.e., authorized, OEM approved, etc.) service component element is installed or not.