Abstract:
A method is for dynamically adjusting a circadian rhythm of an observer via a user device that includes control circuitry and an associated memory. The method includes accessing a calendar, identifying future events to precondition for and determining a preconditioning schedule for at least one of the identified future events. Determining the schedule includes identifying a circadian shift needed for the at least one identified future event, determining a magnitude of the circadian shift, determining a timeframe for preconditioning, determining a magnitude of a per-day shift based upon the timeframe, and determining if the per-day shift exceeds a maximum allowed per-day shift. Also, the method includes, upon a determination that the per-day shift exceeds the maximum allowed per-day shift, setting the preconditioning schedule responsive to the determination, establishing communication between the control circuitry and a light source, and operating the light source to emit light based upon the preconditioning schedule.
Abstract:
An LED lamp comprising a housing, a drive circuit configured to electrically couple to a power source, and an LED package that is electrically coupled to and driven by the drive circuit. The LED package comprises a first LED configured to emit light having a peak intensity of about 450 nm, a second LED configured to emit light having a peak intensity within the range from 475 nm to 495 nm, and a color conversion material configured to perform a Stokes shift on light having a wavelength within the range from 440 nm to 460 nm.
Abstract:
An LED lamp for producing biologically-adjusted light output comprising a base, a housing attached to the base, a drive circuit configured to electrically couple to a power source, and a plurality of LEDs. The drive circuit is configured to operate the plurality of LEDs such that a peak blue output intensity level, in a visible spectral output range of between 380 nm and 485 nm is between 0% and 10% of a relative spectral power of any other peaks in the visible spectral output above 485 nm.
Abstract:
An LED lamp comprising a housing, a drive circuit configured to electrically couple to a power source, and an LED package that is electrically coupled to and driven by the drive circuit. The LED package comprises a first LED configured to emit light having a peak intensity of about 450 nm, a second LED configured to emit light having a peak intensity within the range from 475 nm to 495 nm, and a color conversion material configured to perform a Stokes shift on light having a wavelength within the range from 440 nm to 460 nm.
Abstract:
A lighting system comprising a light source, a controller operably coupled to the light source, and a timekeeping device operably coupled to the controller. The controller is configured to receive a selected action time associated with an agricultural product. The agricultural product includes an associated circadian rhythm defining an optimal action time range. The controller is configured to determine a lighting schedule responsive to the selected action time, the optimal action time range, and a time of day indicated by the timekeeping device, the lighting schedule being configured to impose a circadian rhythm on the agricultural product to shift the optimal action time range such that the selected action time coincides with the optimal action time range. The controller is configured to operate the light source according to the lighting schedule.
Abstract:
A method is for dynamically adjusting a circadian rhythm of an observer via a user device that includes control circuitry and an associated memory. The method includes determining a preconditioning schedule for at least one future event. Determining the schedule includes determining a preconditioning schedule for the at least one future events, including identifying a circadian shift needed, to the circadian rhythm of the observer, for the at least one future event, determining a timeframe for preconditioning, determining a per-day shift needed based upon the identified circadian shift needed and the determined timeframe, and determining if the needed per-day shift exceeds a threshold. Upon a determination that the per-day shift exceeds the threshold, the method includes setting the preconditioning schedule responsive to the determination to operate a light source to emit light based upon the preconditioning schedule.
Abstract:
A method of monitoring movement and predicting a pattern of an individual by a monitoring system comprising a server and a plurality of occupancy-detecting luminaires in communication with the server comprising the steps of receiving an indication of a detected occupancy of an individual from a luminaire of the plurality of luminaires and determining if the system is presently in a pattern for the individual associated with the indication of detected occupancy. Upon a determination that the system is not presently in a pattern, the indication of detected occupancy is written to a record, the record is compared to a database of patterns, and it is determined if a pattern is identifiable from the record. Upon a determination that the system is presently in a pattern, it is determined whether the indication of detected occupancy complies with the pattern.
Abstract:
A sterilization device comprising an ultraviolet (UV) electromagnetic radiation (EMR) emitting device, a detector configured to detect occupancy of a room associated with the sterilization device, and a controller operably connected to each of the UV EMR emitting device and the detector. The detector is configured to send a signal indicating occupancy to the controller upon a detection of occupancy. The controller is configured to operate the UV EMR emitting device to emit UV EMR only upon receiving a signal indicating no occupancy.
Abstract:
An intracranial pressure measuring system comprising a light source, a controller operatively coupled to the light source and a sensor operatively coupled to the controller. The controller is configured to operate the light source to emit light within a wavelength range that can be reflected by ocular vasculature of a person. The sensor is configured to measure a diagnostic reflectance being the intensity of light reflected by the ocular vasculature. The controller is configured to determine if the diagnostic reflectance deviates beyond a threshold and to perform an action responsive to the diagnostic reflectance deviating beyond the threshold.
Abstract:
An LED lamp includes a frame, a power circuit, a driver circuit coupled with the power circuit, an optical member comprising a reflective surface and a lower surface, the reflective surface defining an optical cavity, a light source support member defining a first aperture, and a light source comprising a plurality of LED dies coupled to and driven by the driver circuit. The light source support member is positioned proximate to the lower surface and generally conforms to a shape of the lower surface forming a gap therebetween defined as a second aperture. Additionally, the light source support member is configured to carry the light source in an orientation such that light emitted by the plurality of LEDs is incident upon the reflective surface. Furthermore, the reflective surface is configured to reflect light incident thereupon in the direction of at least one of the first aperture and the second aperture.