Abstract:
An LED lamp for producing biologically-adjusted light output comprising a base, a housing attached to the base, a drive circuit configured to electrically couple to a power source, and a plurality of LEDs. The drive circuit is configured to operate the plurality of LEDs such that a peak blue output intensity level, in a visible spectral output range of between 380 nm and 485 nm is between 0% and 10% of a relative spectral power of any other peaks in the visible spectral output above 485 nm.
Abstract:
An LED lamp comprising a housing, a drive circuit configured to electrically couple to a power source, and an LED package that is electrically coupled to and driven by the drive circuit. The LED package comprises a first LED configured to emit light having a peak intensity of about 450 nm, a second LED configured to emit light having a peak intensity within the range from 475 nm to 495 nm, and a color conversion material configured to perform a Stokes shift on light having a wavelength within the range from 440 nm to 460 nm.
Abstract:
A lighting system comprising a light source, a controller operably coupled to the light source, and a timekeeping device operably coupled to the controller. The controller is configured to receive a selected action time associated with an agricultural product. The agricultural product includes an associated circadian rhythm defining an optimal action time range. The controller is configured to determine a lighting schedule responsive to the selected action time, the optimal action time range, and a time of day indicated by the timekeeping device, the lighting schedule being configured to impose a circadian rhythm on the agricultural product to shift the optimal action time range such that the selected action time coincides with the optimal action time range. The controller is configured to operate the light source according to the lighting schedule.
Abstract:
A tunable LED lamp for producing biologically-adjusted light having a housing, a power circuit, a driver circuit disposed within the housing and electrically coupled with the power circuit, and a plurality of LED dies electrically coupled to and driven by the driver circuit. The driver circuit may drive the plurality of LED dies to emit a phase-shift light having a first spectral power distribution, a general illuminating light having a second spectral power distribution, and a pre-sleep light having a third spectral power distribution. The phase-shift light may be configured to affect a first biological effect in an observer, and the pre-sleep light may be configured to affect a second biological effect in an observer. The LED lamp may include an intermediate base to couple the lamp to an Edison screw base. The LED lamp may be configured to operate responsive to a three-way switch.
Abstract:
Provided herein are systems and methods for outdoor lighting, which generally include two or more light sources. One light source is a monochromatic light source producing a light with a peak wavelength of about 580 nm or above. A second light source is a polychromatic light source producing a green-tint white light. During a standby operational mode, a control system maintains the first light source illuminated. The control system, which includes an integrated imaging system, illuminates both the first light source and the second light source when the imaging system identifies a target in an illumination area. Methods of preparing and using such outdoor lighting system are also provided.
Abstract:
A lighting system with selectable emission characteristics may include a housing, a controller, a first plurality of light sources operatively coupled to the controller and carried by the housing, and a second plurality of light sources operatively coupled to and controlled by the controller and carried by the housing. The first and second pluralities of light sources may be operable to emit first and second combined lights, respectively, and to emit a first light having a wavelength within the range of 650 nanometers to 700 nanometers, a second light having a wavelength within the range of 500 nanometers to 570 nanometers, and a third light having a wavelength within the range of 430 nanometers to 470 nanometer. The second light may be characterized by a human photopic response of greater than 0.0 and less than 0.4 throughout the range from 500 nanometers to 570 nanometers.
Abstract:
A lighting system with adjustable wavelength output that may include a plurality of light sources, a controller positioned in electrical communication with the plurality of light sources, and an optical sensor system positioned in electrical communication with the controller. The controller may be configured to selectively operate each light source of the plurality of light sources to emit one or more source lights. The optical sensor system may be configured to sense a reflected light that is reflected by an object upon which the source lights are incident. The optical sensor system may be configured to sense a wavelength range of the reflected light defined as a measured wavelength range and may further be configured to transmit a signal to the controller responsive to the measured wavelength range. The controller may be configured to operate the plurality of light sources responsive to the signal received from the optical sensor system.
Abstract:
A lighting system with selectable emission characteristics may include a housing, a controller, a first plurality of light sources operatively coupled to the controller and carried by the housing, and a second plurality of light sources operatively coupled to and controlled by the controller and carried by the housing. The first and second pluralities of light sources may be operable to emit first and second combined lights, respectively, and to emit a first light having a wavelength within the range of 650 nanometers to 700 nanometers, a second light having a wavelength within the range of 500 nanometers to 570 nanometers, and a third light having a wavelength within the range of 430 nanometers to 470 nanometer. The second light may be characterized by a human photopic response of greater than 0.0 and less than 0.4 throughout the range from 500 nanometers to 570 nanometers.
Abstract:
Provided herein are systems and methods for outdoor lighting, which generally include two or more light sources. One light source is a monochromatic light source producing a light with a peak wavelength of about 580 nm or above. A second light source is a polychromatic light source producing a green-tint white light. During a standby operational mode, a control system maintains the first light source illuminated. The control system, which includes an integrated imaging system, illuminates the second light source when the imaging system identifies a target in an illumination area. Methods of preparing and using such outdoor lighting system are also provided.
Abstract:
An LED lamp comprising a housing, a drive circuit, LED dies driven by the drive circuit, and an output-select controller to program the drive circuit to drive the LED dies in one of a pre-sleep configuration and a general lighting configuration. The LED dies comprise LED dies of a first spectral output having a peak wavelength between 500 nm and 600 nm and of a second spectral output having a peak wavelength greater than 600 nm, first blue LED dies having a peak wavelength between 420 nm and 480 nm, and second blue LED dies having a peak wavelength below 420 nm. The drive circuit operates each of the LED dies of the first and second spectral outputs and the second blue LED dies in the pre-sleep configuration, and the LED dies of the first and second spectral outputs and the first blue LED dies in the general lighting configuration.