Abstract:
An LED lamp comprising a housing, a drive circuit configured to electrically couple to a power source, and an LED package that is electrically coupled to and driven by the drive circuit. The LED package comprises a first LED configured to emit light having a peak intensity of about 450 nm, a second LED configured to emit light having a peak intensity within the range from 475 nm to 495 nm, and a color conversion material configured to perform a Stokes shift on light having a wavelength within the range from 440 nm to 460 nm.
Abstract:
An LED lamp for producing biologically-adjusted light output comprising a base, a housing attached to the base, a drive circuit configured to electrically couple to a power source, and a plurality of LEDs. The drive circuit is configured to operate the plurality of LEDs such that a peak blue output intensity level, in a visible spectral output range of between 380 nm and 485 nm is between 0% and 10% of a relative spectral power of any other peaks in the visible spectral output above 485 nm.
Abstract:
An LED lamp comprising a housing, a drive circuit configured to electrically couple to a power source, and an LED package that is electrically coupled to and driven by the drive circuit. The LED package comprises a first LED configured to emit light having a peak intensity of about 450 nm, a second LED configured to emit light having a peak intensity within the range from 475 nm to 495 nm, and a color conversion material configured to perform a Stokes shift on light having a wavelength within the range from 440 nm to 460 nm.
Abstract:
An LED lamp for producing biologically-adjusted light output comprising a base, a housing attached to the base, a drive circuit configured to electrically couple to a power source, and a plurality of LEDs. The drive circuit is configured to operate the plurality of LEDs such that a peak blue output intensity level, in a visible spectral output range of between 380 nm and 485 nm is between 0% and 10% of a relative spectral power of any other peaks in the visible spectral output above 485 nm.
Abstract:
An LED lamp comprising a housing, a drive circuit, LED dies driven by the drive circuit, and an output-select controller to program the drive circuit to drive the LED dies in one of a pre-sleep configuration and a general lighting configuration. The LED dies comprise LED dies of a first spectral output having a peak wavelength between 500 nm and 600 nm and of a second spectral output having a peak wavelength greater than 600 nm, first blue LED dies having a peak wavelength between 420 nm and 480 nm, and second blue LED dies having a peak wavelength below 420 nm. The drive circuit operates each of the LED dies of the first and second spectral outputs and the second blue LED dies in the pre-sleep configuration, and the LED dies of the first and second spectral outputs and the first blue LED dies in the general lighting configuration.
Abstract:
An LED lamp comprising a housing, a drive circuit, and a plurality of LED dies driven by the drive circuit, The plurality of LED dies may be in a ratio of at least one of 15 mint LED dies to 5 hyper red LED dies to 4 blue LED dies and 1 mint LED die to 1 hyper red LED die to 1 blue LED die. The drive circuit may operate the LED dies such that a relative peak intensity of the blue LED dies is within the range from 80%-90% or 90%-100% of a peak intensity of the hyper red LED dies, and a relative peak intensity of the mint LED dies is within the range of 50%-60% or 30%-40% of the peak intensity of the hyper red LED dies.
Abstract:
An LED lamp comprising a housing, a drive circuit, and a plurality of LED dies driven by the drive circuit, The plurality of LED dies may be in a ratio of at least one of 15 mint LED dies to 5 hyper red LED dies to 4 blue LED dies and 1 mint LED die to 1 hyper red LED die to 1 blue LED die. The drive circuit may operate the LED dies such that a relative peak intensity of the blue LED dies is within the range from 80%-90% or 90%-100% of a peak intensity of the hyper red LED dies, and a relative peak intensity of the mint LED dies is within the range of 50%-60% or 30%-40% of the peak intensity of the hyper red LED dies.
Abstract:
A tunable light-emitting diode (LED) lamp for producing an adjustable light output is provided. In one embodiment, the LED lamp includes a drive circuit for driving LED dies in one of a plurality of light output configurations (e.g., a pre-sleep configuration, a phase-shift configuration, and a general lighting configuration). Further, the LED lamp may include an output select controller and/or input sensor electrically coupled to the drive circuit to select the light output configuration. As such, the LED lamp is tunable to generate different levels of spectral output, appropriate for varying biological circumstance, while maintaining a commercially acceptable light quality and color rendering index.
Abstract:
An LED lamp comprising a housing, a drive circuit, LED dies driven by the drive circuit, and an output-select controller to program the drive circuit to drive the LED dies in one of a pre-sleep configuration and a general lighting configuration. The LED dies comprise LED dies of a first spectral output having a peak wavelength between 500 nm and 600 nm and of a second spectral output having a peak wavelength greater than 600 nm, first blue LED dies having a peak wavelength between 420 nm and 480 nm, and second blue LED dies having a peak wavelength below 420 nm. The drive circuit operates each of the LED dies of the first and second spectral outputs and the second blue LED dies in the pre-sleep configuration, and the LED dies of the first and second spectral outputs and the first blue LED dies in the general lighting configuration.
Abstract:
A tunable light-emitting diode (LED) lamp for producing an adjustable light output is provided. In one embodiment, the LED lamp includes a drive circuit for driving LED dies in one of a plurality of light output configurations (e.g., a pre-sleep configuration, a phase-shift configuration, and a general lighting configuration). Further, the LED lamp may include an output select controller and/or input sensor electrically coupled to the drive circuit to select the light output configuration. As such, the LED lamp is tunable to generate different levels of spectral output, appropriate for varying biological circumstance, while maintaining a commercially acceptable light quality and color rendering index.