Abstract:
A Czochralski growth system is disclosed comprising a crucible, a silicon delivery system comprising a feeder having a delivery point overhanging the crucible and delivering a controllable amount of silicon into the crucible, and at least one doping mechanism controllably delivering at least one dopant material to the feeder. The system can comprise two or more doping mechanisms each loaded with a different dopant material and can therefore be used to prepare silicon ingots having multiple dopants. The resulting ingots have substantially constant dopant concentrations along their axes. Also disclosed is a method of Czochralski growth of at least one silicon ingot comprising at least one dopant material, which is preferably a continuous Czochralski method.
Abstract:
Efficiency of silicon photovoltaic solar cells is increased by an annealing process for immobilizing oxygen formed in Czochralski-grown silicon. The annealing process includes a short anneal in a rapid thermal annealing chamber at a high temperature, for example, greater than 1150° C. in an oxygen-containing ambient. More preferably, the wafer is rapidly cooled to less than 950° C. without an intermediate temperature hold, at which temperature oxygen does not nucleate and/or precipitate. Subsequent processing to form a photovoltaic structure is typically performed at relatively low temperatures of less than 1000° C. or even 875° C.