Abstract:
A gas turbine systems of reducing NOx emissions and enhancing operability comprises a compressor; a combustor disposed downstream of and in fluid communication with the compressor; a turbine assembly disposed down stream of and in fluid communication with the combustor; an oxygen-enriched gas source disposed in selective fluid communication with the compressor, the combustor, or a combination of the foregoing, wherein the oxygen-enriched gas source is a pressure swing absorption system, an electrolyzer, or a membrane reactor.
Abstract:
A technique is disclosed for a system and method for combined production of power and hydrogen utilizing the heat from a first working fluid heated by a geothermal energy source using a steam generator and an electrolyzer designed to receive the steam produced by the steam generator for the production of hydrogen and oxygen using electrolysis.
Abstract:
A hydrogen reforming system includes a cyclical compression chamber having an entry port for receiving hydrogen-containing gas and an exit port for delivering reformed hydrogen-containing gas, an arrangement for heating the hydrogen-containing gas to a non-combustible temperature, and a drive system for cycling the cyclical compression chamber. The cyclical compression chamber has an operational cycle with an internal pressure and temperature absent combustion effective for reforming the hydrogen-containing gas.
Abstract:
Disclosed herein is a method comprising combusting a feed stream to form combustion products; and reforming the combustion products to produce a gaseous composition comprising hydrogen. Disclosed herein too is a method for producing hydrogen comprising introducing a feed stream comprising natural gas and air or oxygen into a cyclical compression chamber; compressing the feed stream in the cyclical compression chamber; combusting the feed stream in the cyclical compression chamber to produce combustion products; discharging the combustion products from the cyclical compression chamber into a reforming section; and reforming the combustion products with steam in the reforming section to produce a gaseous composition comprising hydrogen.
Abstract:
A power generation system and method includes a first gas turbine system comprising a first combustion chamber configured to combust a first fuel stream of primarily hydrogen that is substantially free of carbon-based fuels. The first gas turbine system also includes a first compressor configured to supply a first portion of compressed oxidant to the first combustion chamber and a first turbine configured to receive a first discharge from the first combustion chamber and generate a first exhaust and electrical energy. The power generation system further includes a second gas turbine system comprising a second combustion chamber configured to combust a second fuel stream to generate a second discharge. The first compressor of the first gas turbine system is configured to supply a second portion of compressed oxidant to the second combustion chamber. The second turbine system also includes a second turbine configured to receive the second discharge from the second combustion chamber to generate a second exhaust and electrical energy and a second compressor configured to receive the second discharge comprising carbon dioxide. The second compressor is also configured to discharge a recycle stream to the second combustion chamber and a split stream to a separator system adapted to recover carbon dioxide.
Abstract:
Disclosed herein is a method comprising combusting a feed stream to form combustion products; and reforming the combustion products to produce a gaseous composition comprising hydrogen. Disclosed herein too is a method for producing hydrogen comprising introducing a feed stream comprising natural gas and air or oxygen into a cyclical compression chamber; compressing the feed stream in the cyclical compression chamber; combusting the feed stream in the cyclical compression chamber to produce combustion products; discharging the combustion products from the cyclical compression chamber into a reforming section; and reforming the combustion products with steam in the reforming section to produce a gaseous composition comprising hydrogen.
Abstract:
An electrolyzer assembly comprises at least one electrolyzer cell including at least two electrodes and an electrolyte interposed therebetween. The electrolyzer assembly further comprises an interconnect structure in intimate contact with at least one of the two electrodes or the electrolyte. The interconnect structure includes at least one flow channel initially defined by a removable sacrificial material, wherein the interconnect structure is configured to provide support for the electrodes and the electrolyte.
Abstract:
A mechanism having a pair of pivoting cassette clamping bars. The clamping bars are connected to a pneumatic cylinder or an electromechanical actuator through a series of links and an actuator wheel so that extension and retraction of the pneumatic cylinder or the electromechanical actuator causes the clamping bars to rotate and counter-rotate. The use of a pneumatic cylinder provides smooth, well-controlled movement of the clamping bars.
Abstract:
A low emission turbine includes a reverse flow can-type combustor that generally includes a primary and secondary fuel delivery system that can be independently controlled to produce low CO, UHC, and NOx emissions at design set point and at conditions other than design set point. The reverse flow can-type combustor generally includes an annularly arranged array of swirler and mixer assemblies within the combustor, wherein each swirler and mixer in the array includes a primary and secondary fuel delivery system that can be independently controlled. Also disclosed herein is a can-type combustor that includes fluid passageways that perpendicularly impinge the backside of a heat shield. Processes for operating the can-type combustors are also disclosed.