Abstract:
The present application provides a low temperature poly-silicon thin film, a low temperature poly-silicon thin film transistor and manufacturing methods thereof, and a display device. The manufacturing method of a low temperature poly-silicon thin film comprises steps of: forming an amorphous silicon thin film on a base; and performing a laser annealing process on the amorphous silicon thin film by using a mask plate to form a low temperature poly-silicon thin film, wherein the mask plate includes a transmissive region and a shielding region surrounding the transmissive region, and two sides of the shielding region adjacent to the transmissive region are in concave-convex shapes. Performance of the low temperature poly-silicon thin film formed by the manufacturing method of a low temperature poly-silicon thin film in the present application is enhanced.
Abstract:
The present invention discloses a thin-film transistor, a preparation method thereof, an array substrate comprising the thin-film transistor, and a display device comprising the array substrate, wherein the preparation method of the thin-film transistor comprises: successively depositing an amorphous silicon thin film and a protective layer thin film on a base substrate; annealing the amorphous silicon thin film so as to transform the amorphous silicon thin film into a poly-silicon thin film; and performing a single patterning process on the poly-silicon thin film and the protective layer thin film to pattern the poly-silicon thin film into an active layer and pattern the protective layer thin film into a protective layer.
Abstract:
A gate electrode and a method for manufacturing the same, and a method for manufacturing an array substrate are provided. The method for manufacturing a gate electrode may include: providing a substrate, wherein the substrate includes a gate electrode region and a non-gate electrode region; and forming a gate electrode layer on the substrate, wherein the gate electrode layer includes a conductive portion corresponding to the gate electrode region and a transparent portion corresponding to the non-gate electrode region. According to the gate electrode and the method for manufacturing the same, and the method for manufacturing an array substrate, step difference can be eliminated, thereby avoiding an influence of the step difference on the crystallization property of a polysilicon material when an Excimer Laser Annealing (ELA) process is performed on the amorphous silicon layer, and obtaining a better crystallization effect.
Abstract:
The present disclosure provides a method for manufacturing a thin-film transistor and a thin-film transistor manufactured thereby, an array substrate and a display apparatus. The method comprises: forming a first layer; forming at least one etch stopper over the first layer; forming a second layer over the first layer and the at least one etch stopper; forming at least one contact via in the second layer, such that a bottom opening of each contact via contacts with a top surface of one etch stopper; and forming at least one electrode in the at least one contact via, such that each electrode extends in one contact via respectively, and is in contact with, and electrically coupled with, the one etch stopper. The at least one etch stopper comprises a composition. The composition is capable of blocking etching to the first layer during formation of the at least one contact via in the second layer; and the composition also has one of the following characteristics: an oxidization product of the composition is readily removable by a solution; an oxidization product is conductive; or the composition is resistant to oxidization.
Abstract:
The present invention discloses an exposure device including: a mask plate, on which a mask pattern is provided; and a first micro lens layer, provided at a light outputting side of the mask plate, wherein the first micro lens layer utilizes light that passes through the mask plate to form a reduced real image of the mask pattern, the real image is located at one side of the first micro lens layer, and the mask plate is located at other side of the first micro lens layer. In the present invention, by utilizing the characteristics of micro lenses, a reduced real image for the mask patter is formed and then projected onto the substrate to be exposed, which effectively increases precision and resolution of exposure and reduces equipment cost and development cost.
Abstract:
The present disclosure provides a thickness measuring method and device. The thickness measuring method is used for measuring a thickness of a layer to be measured of a light-transmitting sample to be measured and comprising the steps of: placing the sample to be measured between an optical device and a metal layer, the optical device comprising a light incident surface and a light exit surface; adjusting incident light emitted to the light incident surface of the optical device so that an intensity of light exiting the light exit surface of the optical device is less than 10−12 W/m2, so as to obtain optical parameters of the incident light; and calculating a thickness of the layer to be measured according to the optical parameters of the incident light.
Abstract:
A method for fabricating an array substrate, an array substrate, and a display device are disclosed. The method includes forming a whole layer of opaque film on a substrate; treating the film to form a transparent region and an opaque region in the film, wherein the opaque region corresponds with a channel region of an active layer; and forming a thin film transistor on the film which has been treated. In the method, prior to forming the thin film transistor, the whole layer of opaque film is formed to comprise the transparent region and the opaque region. When other films are deposited on the whole layer of film, no difference in height occurs, and this further avoids various defects due to difference in height.
Abstract:
The present invention belongs to the field of display technology and provides a thin film transistor and a manufacturing method thereof, an array substrate and a display device. The thin film transistor comprises a gate, a source, a drain and a plurality of insulating layers, wherein at least one insulating layer comprises a Group VB metal oxide. Since the insulting layer is formed by using the Group VB metal oxide which has high dielectric constant, the thickness of the insulating layer can be reduced and the thin film transistor can be miniaturized.