Abstract:
The present invention relates to a chimney tray (3) for a column (1) for thermal treatment of fluid mixtures, comprising a collecting tray (4) and at least two chimneys (5-1, 5-2) spaced apart horizontally in the collecting tray (4), where each chimney (5-1, 5-2) forms a vertically aligned chimney body (6-1, 6-2) which forms a passage orifice (7-1, 7-2) through the collecting tray (4), and has a cover unit (8-1, 8-2) arranged spaced apart from the chimney body (6-1, 6-2), and where the cover unit (8-1, 8-2) covers the respective passage orifices (7-1, 7-2) in the vertical direction. The chimney tray (3) of the invention is characterized by a screen (9) which extends around the chimney body (6-1) of a first chimney (5-1), with the lower annular edge (14) of the screen (9) below the upper edge (13) of the chimney body (6-1) of the first chimney (5-1) and the upper annular edge (11) of the screen (9) above the lower outer edge (12) of the cover unit (8-1) of the first chimney (5-1) or adjoining the lower outer edge (12) of the cover unit (8-1) of the first chimney (5-1).
Abstract:
The present invention relates to a column (1) for thermal treatment of fluid mixtures, having a cylindrical, vertical column body (2) which forms a column cavity (3), a plurality of trays (8) mounted with vertical spacing in the column cavity (3), and a support construction (9) which supports at least one of the trays (8) in vertical direction. It is a characteristic feature of the inventive column (1) that the support construction (9) has a plurality of orifices (12) which allow horizontal mass transfer through the support construction (9). The invention further relates to a tray device for such a column and to a thermal separation process between at least one gas ascending within such a column (1) and at least one liquid descending within the column (1).
Abstract:
A system (1) and method for operating a liquid gas evaporator (3), comprising an evaporator (3), a trough (5) carrying the evaporator (3), a housing (7) which surrounds the evaporator (3) on three sides, at least one detector (9) for sensing liquid gas arranged in the trough (5), a line (11) for the distribution of vapor D on the fourth, non-housed side of the evaporator (3) arranged at the margin of the trough (5) which is not closed off by the housing (7), a feed (13), connected to the line (11), and a regulating valve (15) provided on the feed (13) and connected to the detector (9) and at least one shut-off valve (17).
Abstract:
The present invention relates to a process for treating secondary components obtained in acrolein and/or (meth)acrylic acid production, comprising the steps of: a) contacting at least one wastewater stream (201) comprising at least a portion of the water of reaction removed in a first stage of a saturation column (101) with at least one process offgas stream (203), b) introducing energy by means of a first heat transferer (103) provided in a first saturation circuit (301) into the first stage of the saturation column (101), c) partly vaporizing the wastewater stream (201) into the process offgas stream (203) and passing the combined gas stream (205) into a second stage of the saturation column (101), d) drawing off a concentrated wastewater stream (207) from the bottom (1011) of the first stage of the saturation column (101) and feeding it to the top (1023) of the second stage of the saturation column (101), e) introducing energy by means of a second heat transferer (105) provided in a second circuit (303) into the second stage of the saturation column (101), f) partly vaporizing the concentrated wastewater stream (207) into the combined gas stream (205) to obtain an offgas stream (209), g) superheating the offgas stream (209), after it has been saturated, in a third heat transferer (113) to obtain a superheated offgas stream (211) and h) transferring the offgas stream (209) or the superheated offgas stream (211) from the saturation column (101) to a thermal aftertreatment. The present invention further relates to a plant (1) for treating the secondary components obtained in acrolein and/or (meth)acrylic acid production.
Abstract:
An α,β-unsaturated aldehyde and/or an α,β-unsaturated carboxylic acid are prepared by gas phase oxidation of alkene with molecular oxygen over a fixed catalyst bed comprising a bed of hollow cylindrical shaped catalyst bodies having a multimetal oxide active composition. The fixed catalyst bed comprises at least three successive reaction zones; the highest local temperature in the fixed catalyst bed does not occur in the reaction zone closest to the reactor outlet; the highest local temperature in the fixed catalyst bed does not occur in the reaction zone closest to the reactor inlet; and the value WT=(ED−ID)/2 in the reaction zone in which the highest local temperature in the fixed catalyst bed occurs is lower than in the other reaction zones, in which ED is the external diameter and ID is the internal diameter of the shaped catalyst body. The yield of the products of value is enhanced in this way.
Abstract:
A plant (1) for recovering acrylic acid, which includes: a absorption column (201); a dissociation column (205); a first line (101) connected to the dissociation column (205); a second line (102) connecting the absorption column (201) and the dissociation column (205); a third line (103) feeding a substream of the mother acid obtained in the crystallization into the dissociation column (205); a fourth line (104) connecting the crystallization apparatus and the absorption column (201); and a fifth line (105) connecting the dissociation column (205) and the absorption column (201).
Abstract:
A reactor system (1) having a reactor 3, at least one cooler (5) connected to the reactor (3), at least one pump (7) for circulating at least some of a liquid heat-transfer medium (9), wherein the pump (7) is connected to the reactor (3) and/or the at least one cooler (5), and a container (11) for collecting the liquid heat-transfer medium (9) is provided. The container (11) is connected to the reactor (3) and/or the at least one cooler (5) and is disposed substantially below the reactor (3) and/or the at least one cooler (5). Also provided are exothermic reactions which are conducted in the reactor system.
Abstract:
A process for recovering acrylic acid, including: a) division of a heated mother acid stream in direction of an absorption a condensation column and a dissociation column; b) feeding of a heated mother acid substream as runback to the dissociation column; c) feeding-in of at least one stripping gas stream to the dissociation column; d) feeding-in of a secondary component stream comprising oligomeric acrylic acid from the absorption column to the dissociation column; e) dissociation of part of oligomeric acrylic acid in the dissociation column to give monomeric acrylic acid; f) removal of secondary components comprised in the secondary component stream in the dissociation column; g) discharge of monomeric acrylic acid as gas mixture with introduced circulating stripping gas stream from the dissociation column; and h) feeding-in of the gas mixture to the absorption column.
Abstract:
The present invention relates to an extraction column 1 having a vertically aligned column body 2 which is cylindrical at least in sections and forms a column cavity 3 having a horizontal maximum extent, with provision in the column body 2 of at least one first feed 4 for an extractant, at least one second feed 5 for the fluid to be extracted and at least one outlet 6 for the extract mixture and at least one outlet for the raffinate. In the inventive extraction column 1, a vertically aligned divider 7 arranged within the column cavity 3 subdivides the column cavity 3 into a plurality of vertically aligned and horizontally divided regions, the horizontal maximum extent of each region being less than the horizontal maximum extent of the column cavity 3. The invention further relates to a process for extracting a constituent from a fluid by means of such an extraction column 1.
Abstract:
A hollow cylindrical shaped catalyst body for gas phase oxidation of an alkene to an α,β-unsaturated aldehyde and/or an α,β-unsaturated carboxylic acid comprises a compacted multimetal oxide having an external diameter ED, an internal diameter ID and a height H, wherein ED is in the range from 3.5 to 4.5 mm; the ratio q=ID/ED is in the range from 0.4 to 0.55; and the ratio p=H/ED is in the range from 0.5 to 1. The shaped catalyst body is mechanically stable and catalyzes the partial oxidation of an alkene to the products of value with high selectivity. It provides a sufficiently high catalyst mass density of the catalyst bed and good long-term stability with acceptable pressure drop.
Abstract translation:用于将烯烃气相氧化成α,β-不饱和醛和/或α,β-不饱和羧酸的中空圆柱形催化剂体包括具有外径ED,内径ID的压实多金属氧化物,和 高度H,其中ED在3.5至4.5mm的范围内; 比值q = ID / ED在0.4至0.55的范围内; 并且比例p = H / ED在0.5至1的范围内。成形的催化剂体是机械稳定的并且以高选择性催化烯烃部分氧化成价值的产物。 它提供催化剂床的足够高的催化剂质量密度,并具有良好的长期稳定性和可接受的压降。