Abstract:
The present invention relates to an extraction column 1 having a vertically aligned column body 2 which is cylindrical at least in sections and forms a column cavity 3 having a horizontal maximum extent, with provision in the column body 2 of at least one first feed 4 for an extractant, at least one second feed 5 for the fluid to be extracted and at least one outlet 6 for the extract mixture and at least one outlet for the raffinate. In the inventive extraction column 1, a vertically aligned divider 7 arranged within the column cavity 3 subdivides the column cavity 3 into a plurality of vertically aligned and horizontally divided regions, the horizontal maximum extent of each region being less than the horizontal maximum extent of the column cavity 3. The invention further relates to a process for extracting a constituent from a fluid by means of such an extraction column 1.
Abstract:
The present invention relates to a process for preparing cyclohexane from methylcyclopentane (MCP) and benzene. In the context of the present invention, MCP and benzene are constituents of a hydrocarbon mixture (HM1) additionally comprising dimethylpentanes (DMP), possibly cyclohexane and possibly at least one compound (low boiler) selected from acyclic C5-C6-alkanes and cyclopentane. First of all, benzene is converted in a hydrogenation step to cyclohexane (that present in the hydrocarbon mixture (HM2)), while MCP is isomerized in the presence of a catalyst, preferably of an acidic ionic liquid, to cyclohexane. After the hydrogenation but prior to the isomerization the dimethylpentanes (DMP) are removed, with initial removal of the cyclohexane present in the hydrocarbon mixture (HM2) together with DMP. This cyclohexane already present prior to the isomerization can be separated again from DMP in a downstream rectification step and isolated and/or recycled into the process for cyclohexane preparation. Between the DMP removal and MCP isomerization—if low boilers are present in the hydrocarbon mixture (HM1)—low boilers are, optionally removed. After the isomerization, the cyclohexane is isolated, optionally with return of unisomerized MCP and optionally of low boilers. Preferably, cyclohexane and/or low boilers are present in the hydrocarbon mixture (HM1), and so a low boiler removal is preferably conducted between the DMP removal from isomerization. It is additionally preferable that the removal of the cyclohexane from DMP is additionally conducted, meaning that the cyclohexane component which arises in the benzene hydrogenation and may be present in the starting mixture (HM1) is isolated and hence recovered.
Abstract:
The invention relates to a silver-comprising catalyst system for the preparation of aldehydes and/or ketones by oxidative dehydrogenation of alcohols, in particular the oxidative dehydrogenation of methanol to form formaldehyde, comprising a first catalyst layer and a second catalyst layer, wherein the first catalyst layer consists of a silver-comprising material in the form of balls of wire, gauzes or knitteds having a weight per unit area of from 0.3 to 10 kg/m2 and a wire diameter of from 30 to 200 μm and the second catalyst layer consists of a silver-comprising material in the form of granular material having an average particle size of from 0.5 to 5 mm and the two catalyst layers are in direct contact with one another. The invention further relates to a corresponding process for the preparation of aldehydes and/or ketones, in particular of formaldehyde, by oxidative dehydrogenation of corresponding alcohols over a silver-comprising catalyst system.
Abstract:
The present invention relates to a process for separating a phase (A) comprising at least one ionic liquid from a phase (B), where the phase (A) has a higher viscosity than the phase (B), which comprises the following steps: a) provision of a stream (S1) comprising a dispersion (D1) in which the phase (A) is dispersed in the phase (B), b) introduction of the stream (S1) into a coalescing device (KV), where the inflow rate of the stream (S1) is from 0.05 to 150 kg/(cm2*h) based on the average cross-sectional area of the coalescing device (KV), c) separation of the disperse phase (A) from the phase (B) in the coalescing device (KV), d) discharge of a stream (S2) comprising at least 70% by weight, preferably at least 90% by weight, of phase (A) from the coalescing device (KV) and e) discharge of a stream (S3) comprising at least 70% by weight, preferably at least 90% by weight, of phase (B) from the coalescing device (KV).
Abstract:
An aqueous solution comprising acrylic acid and the conjugate base thereof in a total amount of at least 10% by weight, based on the weight of the aqueous solution, and propionic acid and the conjugate base thereof, formic acid and the conjugate base thereof, acetic acid and the conjugate base thereof, benzoic acid and the conjugate base thereof, maleic anhydride, maleic acid and the conjugate bases thereof, phthalic anhydride, phthalic acid and the conjugate bases thereof, acrolein, benzaldehyde, 2-furaldehyde, and at least 20 mol % of at least one alkali metal cation; process for preparing this solution; and the use of this solution for preparation of polymer by free-radical polymerization.