Abstract:
A multi-chamber processing system includes a transfer chamber, a first processing chamber outfitted to perform CVD, a second processing chamber, and a robot positioned to transfer substrates between the transfer chamber, the first processing chamber, and the second processing chamber. The second processing chamber may include one or a combination of a first electrode and a second electrode comprising a plasma cavity formed therein.
Abstract:
Embodiments described herein relate to a thermal chlorine gas cleaning process. In one embodiment, a method for cleaning N-Metal film deposition in a processing chamber includes positioning a dummy substrate on a substrate support. The processing chamber is heated to at least about 50 degrees Celsius. The method further includes flowing chlorine gas into the processing chamber and evacuating chlorine gas from the processing chamber. In another embodiment, a method for cleaning titanium aluminide film deposition in a processing chamber includes heating the processing chamber to a temperature between about 70 about degrees Celsius and about 100 degrees Celsius, wherein the processing chamber and the substrate support include one or more fluid channels configured to heat or cool the processing chamber and the substrate support.
Abstract:
Embodiments provide methods for depositing metal-containing materials. The methods include deposition processes that form metal, metal carbide, metal silicide, metal nitride, and metal carbide derivatives by a vapor deposition process, including thermal decomposition, CVD, pulsed-CVD, or ALD. A method for processing a substrate is provided which includes depositing a dielectric material forming a feature definition in the dielectric material, depositing a work function material conformally on the sidewalls and bottom of the feature definition, and depositing a metal gate fill material on the work function material to fill the feature definition, wherein the work function material is deposited by reacting at least one metal-halide precursor having the formula MXY, wherein M is tantalum, hafnium, titanium, and lanthanum, X is a halide selected from the group of fluorine, chlorine, bromine, or iodine, and y is from 3 to 5.