Abstract:
A method for depositing a low dielectric constant film is provided by reacting a gas mixture including one or more linear, oxygen-free organosilicon compounds, one or more oxygen-free hydrocarbon compounds comprising one ring and one or two carbon-carbon double bonds in the ring, and one or more oxidizing gases. Optionally, the low dielectric constant film is post-treated after it is deposited. In one aspect, the post treatment is an electron beam treatment.
Abstract:
A method for depositing a low dielectric constant film having a dielectric constant of about 3.0 or less, preferably about 2.5 or less, is provided by reacting a gas mixture including one or more organosilicon compounds and one or more oxidizing gases. In one aspect, the organosilicon compound comprises a hydrocarbon component having one or more unsaturated carbon-carbon bonds, and in another aspect, the gas mixture further comprises one or more aliphatic hydrocarbon compounds having one or more unsaturated carbon-carbon bonds. The low dielectric constant film is post-treated after it is deposited. In one aspect, the post treatment is an electron beam treatment, and in another aspect, the post-treatment is an annealing process.
Abstract:
A method for depositing a low dielectric constant film having an improved hardness and elastic modulus is provided. In one aspect, the method comprises depositing a low dielectric constant film having silicon, carbon, and hydrogen, and then treating the deposited film with a plasma of helium, hydrogen, or a mixture thereof at conditions sufficient to increase the hardness of the film.
Abstract:
A method is provided for processing a substrate including treating a surface of a dielectric layer comprising silicon and carbon by exposing the dielectric layer comprising silicon and carbon to a plasma of an inert gas, and depositing a photoresist on the dielectric layer comprising silicon and carbon. The dielectric layer may comprise a first dielectric layer comprising silicon, carbon, and nitrogen, and a second layer of nitrogen-free silicon and carbon containing material in situ on the first dielectric layer, and a third dielectric layer comprising silicon, oxygen, and carbon on the second dielectric layer.
Abstract:
A method for providing a dielectric film having enhanced adhesion and stability. The method includes a post deposition treatment that densifies the film in a reducing atmosphere to enhance stability if the film is to be cured ex-situ. The densification generally takes place in a reducing environment while heating the substrate. The densification treatment is particularly suitable for silicon-oxygen-carbon low dielectric constant films that have been deposited at low temperature.
Abstract:
A method of forming a low dielectric constant silicate material for use in integrated circuit fabrication processes is disclosed. The low dielectric constant silicate material is formed by reacting by reacting a gas mixture comprising an organosilane compound, an oxygen source, and an inert gas. Thereafter, a silicon carbide cap layer is formed on the silicate material by reacting a gas mixture comprising a silicon source and a carbon source. The silicon carbide cap layer protects the underlying organosilicate layer from cracking and peeling when it is hardened during a subsequent annealing step.
Abstract:
A method of forming a silicon carbide layer, a silicon nitride layer, an organosilicate layer is disclosed. The silicon carbide layer is formed by reacting a gas mixture comprising a silicon source, a carbon source, and a fluorine source in the presence of an electric field. The silicon nitride layer is formed by reacting a gas mixture comprising a silicon source, a nitrogen source, and a fluorine source in the presence of an electric field. The organosilicate layer is formed by reacting a gas mixture comprising a silicon source, a carbon source, an oxygen source and a fluorine source in the presence of an electric field. The silicon carbide layer, the silicon nitride layer and the organosilicate layer are all compatible with integrated circuit fabrication processes.
Abstract:
Methods are provided for processing a substrate for depositing an adhesion layer having a low dielectric constant between two low k dielectric layers. In one aspect, the invention provides a method for processing a substrate including depositing a barrier layer on the substrate, wherein the barrier layer comprises silicon and carbon and has a dielectric constant less than 4, depositing a dielectric initiation layer adjacent the barrier layer, and depositing a first dielectric layer adjacent the dielectric initiation layer, wherein the dielectric layer comprises silicon, oxygen, and carbon and has a dielectric constant of about 3 or less.
Abstract:
A method of fabricating an interconnect structure comprising etching a via into an upper low K dielectric layer and into a hardened portion of a lower low K dielectric layer. The via is defined by a pattern formed in a photoresist layer. The photoresist layer is then stripped, and a trench that circumscribes the via as defined by a hard mask is etched into the upper low K dielectric layer and, simultaneously, the via that was etched into the hardened portion of the lower low K dielectric layer is further etched into the lower low K dielectric layer. The result is a low K dielectric dual damascene structure.
Abstract:
A method is provided for processing a substrate including providing a processing gas comprising an organosilicon compound comprising a phenyl group to the processing chamber, and reacting the processing gas to deposit a low k silicon carbide barrier layer useful as a barrier layer in damascene or dual damascene applications with low k dielectric materials. A method is provided for depositing a silicon carbide cap layer that has substantially no phenyl groups attached to silicon atoms from a processing gas comprising an oxygen-free organosilicon compound on a low k silicon carbide barrier layer.