Abstract:
An electronic device may utilize various methods or systems to determine whether the electronic device is indoors or outdoors. The electronic device transmits wireless signals (e.g., radio detection and ranging (RADAR) signals). The electronic device receives reflections of the wireless signals. Using these received reflections of the wireless signals, the electronic device determines whether a power amplitude of the reflections is greater than or equal to a threshold value. In response to a determination that the power amplitude is not greater than or equal to the threshold value, the electronic device operates in an outdoor mode or an indoor mode.
Abstract:
The disclosed embodiments use 3D city models and shadow mapping to improve altitude fixes in urban environments. In an embodiment, a method comprises: generating a set of three-dimensional (3D) candidate positions in a geographic area of interest; predicting global navigation satellite system (GNSS) signal visibility at selected ones of the 3D candidate positions; receiving GNSS signals at a current location of the mobile device; determining observed satellite visibility based on the received GNSS signals; comparing the predicted satellite visibility with the observed satellite visibility; determining a position fix based on a result of the comparing; determining an indoor environment where the mobile device is located based at least on an altitude component of the position fix; obtaining structural data for the identified indoor environment; and determining a floor lower bound for the current location of the mobile device based on the altitude component and the structural data.
Abstract:
Methods, systems and computer program products for determining and filtering potential outliers in RF signals used in radionavigation are described. A radionavigation subsystem of a mobile device can determine a first location estimate of the mobile device. The mobile device can determine a free direction from the first location estimate. The free direction can be a direction along which RF signals may cause greater position errors than RF signals from other directions may cause. The mobile device can determine a potential outlier among the received RF signals, the potential outlier being an RF signal from a signal source in the free direction. The mobile device can indicate to the radionavigation subsystem that a weight of the potential outlier shall be reduced when determining a second location estimate of the mobile device using the RF signals.
Abstract:
Techniques for GNSS positioning using three-dimensional (3D) building models are described. A processor can determine a probable path for a signal from a GNSS space vehicle (e.g., a satellite) to reach the GNSS receiver. The probable path can include one or more specular reflections. The processor can determine a Doppler correction based on the probable path, including inverting a sense of a vector of the Doppler correction for each reflection. The processor can then incorporate the Doppler correction in an estimated velocity of the mobile device, an estimated position of the mobile device, or both.
Abstract:
Techniques for GNSS positioning using three-dimensional (3D) building models are described. A processor of a mobile device can determine a lower bound of uncertainty for an estimated position of the mobile device. The processor can receive an estimated position from a GNSS receiver of the mobile device. The processor can acquire geographic feature data including 3D building models of buildings and other geographic features that are located near the estimated position and may reflect GNSS signals. The processor can then determine a lower bound of uncertainty of the estimated position, regardless of an estimated uncertainty provided by a GNSS estimator. The lower bound can be higher (e.g., have a greater error margin) than the uncertainty value provided by the GNSS estimator. The processor can then present the estimated position, in association with an error margin corresponding to the lower bound of uncertainty, on a map user interface of the mobile device.
Abstract:
Embodiments of the present disclosure are directed to, among other things, monitoring a user device to determine whether a user associated with the device is safe. In some examples, a user (which may be referred to herein as an “initiator” establishes a device monitoring session (which may be referred to herein as “session”) with a user, or a group of users, so that the user(s) are notified either when the initiator has safely ended the device monitoring session or receives access to session data that was collected during the session. In some configurations, the session can be handed off from a first user device that is currently active to a different user device. Instead of the first user device always being the device that interacts with the server, a different first user device may be selected as the active device to interact with the server.
Abstract:
Techniques for location source control for paired devices are described. Location source control selects a location source for a mobile device. The mobile device can receive, from an application program, a request for determining a location of the mobile device. The mobile device can determine a first location estimate using a location subsystem of the mobile device. The mobile device can determine whether to provide the first location estimate as input to the application program, or to provide a second location estimate as input to the application program. The second location estimate can be an estimated location of the companion device and determined by the companion device.
Abstract:
Techniques for location source control for paired devices are described. Location source control selects a location source for a mobile device. The mobile device can receive, from an application program, a request for determining a location of the mobile device. The mobile device can determine a first location estimate using a location subsystem of the mobile device. The mobile device can determine whether to provide the first location estimate as input to the application program, or to provide a second location estimate as input to the application program. The second location estimate can be an estimated location of the companion device and determined by the companion device.
Abstract:
The disclosed embodiments use 3D city models and shadow mapping to improve altitude fixes in urban environments. In an embodiment, a method comprises: generating a set of three-dimensional (3D) candidate positions in a geographic area of interest; predicting global navigation satellite system (GNSS) signal visibility at selected ones of the 3D candidate positions; receiving GNSS signals at a current location of the mobile device; determining observed satellite visibility based on the received GNSS signals; comparing the predicted satellite visibility with the observed satellite visibility; determining a position fix based on a result of the comparing; determining an indoor environment where the mobile device is located based at least on an altitude component of the position fix; obtaining structural data for the identified indoor environment; and determining a floor lower bound for the current location of the mobile device based on the altitude component and the structural data.
Abstract:
Described herein are techniques to enable a mobile device to perform multi-source estimation of an altitude for a location. A baseline altitude may be determined at ground level for a location and used to calibrate a barometric pressure sensor on the mobile device. The calibrated barometric pressure sensor can then estimate changes in altitude relative to ground level based on detected pressure differentials, allowing a relative altitude to ground to be determined. Baseline calibration for the barometric sensor calibration can be performed to determine an ambient ground-level barometric pressure.