Abstract:
An automated environment can include an accessory device that operates according to an automation rule, to take a prescribed action when a triggering condition occurs. A controller device for the automated environment can determine a user's regular routine and can detect when the user is deviating from the regular routine. The controller device can communicate with accessory devices in the automated environment to modify their behavior relative to the automation rules.
Abstract:
Techniques are provided for contacting emergency response services when certain conditions are met. In some instances, it may be determined, by a wearable device, whether a user has responded to a first user interface prompt displayed in response to detection of a physical event associated with the user. In accordance with a determination that the user has not responded to the first user interface prompt after expiration of a first time period, certain actions may be performed. For example, a countdown timer may begin to run for a second timer period. During the second period, an audio alert and a haptic alert may be output by the wearable device. In accordance with a determination that the user has not responded to a second user interface prompt prior to expiration of the second time period, a communication channel request may be transmitted to an emergency response service by the wearable device.
Abstract:
Behavior information can be aggregated across multiple automated environments (e.g., across homes in a neighborhood). The automated environments can provide information about detected environment-level behavior patterns to a server. The server can aggregate the patterns across environments in a defined neighborhood and can provide neighborhood-level information back to the participating automated environments. The neighborhood-level information can be used to drive decisions and behavioral changes in individual automated environments.
Abstract:
In some implementations, a method includes receiving, from a server, location data identifying locations of access points and mobile access points. A mobile device may determine an identifier of an access point within a communication range. The identifier is compared with the location data to identify parameters for the access point. The access point is determined to be a mobile access point based on the identified parameters included in the location data. In response to identifying the mobile access point, operating parameters executed by the mobile device are updated.
Abstract:
In some implementations, a method includes receiving, from a server, location data identifying locations of access points and mobile access points. A mobile device may determine an identifier of an access point within a communication range. The identifier is compared with the location data to identify parameters for the access point. The access point is determined to be a mobile access point based on the identified parameters included in the location data. In response to identifying the mobile access point, operating parameters executed by the mobile device are updated.
Abstract:
Methods, program products, and systems for location-based application program management are described. A mobile device can receive a first application program to be executed in an application subsystem. The first application program can be configured to be invoked or notified when the mobile device is located at a defined location. The mobile device can register the first application program to a second application program that executes in a baseband subsystem. The mobile device can set the application subsystem to a power-saving operating mode. The second application program can monitor a current location of the mobile device. When the mobile device is currently located at the defined location, the second application program can set the application subsystem to an active operating mode, and invoke the first application program.
Abstract:
A method for using a location to refine network-provided time zone information is disclosed. The method can include a wireless communication device receiving a time zone information message from a network; determining multiple candidate time zones matching a set of time zone identification parameters included in the received time zone information message; deriving a location of the wireless communication device; and using the location to select a current time zone for the wireless communication device from the candidate time zones matching the set of time zone identification parameters.
Abstract:
Techniques for predictive user assistance are described. A mobile device can learn movement patterns of the mobile device. The mobile device can construct a state model that is an abstraction of locations where the mobile device stayed for sufficient amount of time. The state model can include states representing the locations, and transitions representing movement of the mobile device between the locations. The mobile device can use the state model, a current location of the mobile device, and a current time to determine a predicted future location of the mobile device at a given future time. Based on the predicted location and the given future time, the mobile device can predict what assistance a user of the mobile device may request. The mobile device can then provide the assistance to the user before the given future time.
Abstract:
A parameter related to the Earth's magnetic field can be used to determine accuracy of a magnetometer of a mobile device. In one aspect, a first instance of a parameter related to Earth's magnetic field is determined using data generated by the magnetometer. The magnetometer data can be based in part on a position of the mobile device with respect to the Earth. A second instance of the parameter can be determined using data generated by a model of Earth's magnetic field. The model data can also be based in part on the position of the mobile device with respect to the Earth. The first instance of the parameter can be compared with the second instance of the parameter. An accuracy metric for the magnetometer can be determined based on a result of the comparison. An indication of the accuracy metric can be presented by the mobile device.
Abstract:
Methods, program products, and systems for selective location determination are described. A mobile device can determine a location of the mobile device using various techniques. When there is a conflict between the locations determined using different techniques, the mobile device can select a most trustworthy location from the locations, and designate the most trustworthy location as a current location of the mobile device. The mobile device can determine a first location of the mobile device (e.g., a coarse location) using a cell identifier (cell ID) of a cellular network. The mobile device can determine a second location of the mobile device (e.g., a fine location) using one or more media access control (MAC) addresses of a WLAN. The first location and second location can be associated with confidence values that can indicate trustworthiness of the first location and second location.