Abstract:
Anodic films that have a white color, and methods for forming the same, are described. According to some embodiments, the anodic films have multiple metal oxide layers. A first layer can provide scratch and chemical resistance and a second layer can provide a light diffusing pore structure that diffusely reflects incoming light and provides a white appearance to the anodic film. According to some embodiments, the anodic films also include a smoothed barrier layer that specularly reflects incoming light so as to brighten the appearance and enhance the white color of the anodic film. The resulting anodic films have an opaque white appearance not achievable using conventional techniques. The anodic films are well suited for providing cosmetically appealing coatings for consumer products, such as housings for electronic products.
Abstract:
The embodiments described herein relate to anodizing and anodized films. The methods described can be used to form opaque and white anodized films on a substrate. In some embodiments, the methods involve forming anodized films having branched pore structures. The branched pore structure provides a light scattering medium for incident visible light, imparting an opaque and white appearance to the anodized film. In some embodiments, the methods involve infusing metal complex ions within pores of an anodized. Once within the pores, the metal complex ions undergo a chemical change forming metal oxide particles. The metal oxide particles provide a light scattering medium for incident visible light, imparting an opaque and white appearance to the anodized film. In some embodiments, aspects of the methods for creating irregular or branched pores and methods for infusing metal complex ions within pores are combined.
Abstract:
The embodiments described herein relate to anodizing and anodized films. The methods described can be used to form opaque and white anodized films on a substrate. In some embodiments, the methods involve forming anodized films having branched pore structures. The branched pore structure provides a light scattering medium for incident visible light, imparting an opaque and white appearance to the anodized film. In some embodiments, the methods involve infusing metal complex ions within pores of an anodized. Once within the pores, the metal complex ions undergo a chemical change forming metal oxide particles. The metal oxide particles provide a light scattering medium for incident visible light, imparting an opaque and white appearance to the anodized film. In some embodiments, aspects of the methods for creating irregular or branched pores and methods for infusing metal complex ions within pores are combined.
Abstract:
Anodic films that have a white color, and methods for forming the same, are described. According to some embodiments, the anodic films have multiple metal oxide layers. A first layer can provide scratch and chemical resistance and a second layer can provide a light diffusing pore structure that diffusely reflects incoming light and provides a white appearance to the anodic film. According to some embodiments, the anodic films also include a smoothed barrier layer that specularly reflects incoming light so as to brighten the appearance and enhance the white color of the anodic film. The resulting anodic films have an opaque white appearance not achievable using conventional techniques. The anodic films are well suited for providing cosmetically appealing coatings for consumer products, such as housings for electronic products.
Abstract:
Anodizing techniques for providing highly opaque colorized anodic films are described. According to some embodiments, the methods involve depositing a pigment having a particle diameter of about 20 nanometers or greater into an anodic film. Additionally or alternatively, a barrier layer smoothing operation is used to flatten an interface between the anodic film and underlying metal substrate so as to maximize light reflection off the interface, thereby maximizing light reflected off the pigment that is deposited within pores of the anodic film. The resulting anodic films have an opaque or saturated colored appearance. In some embodiments, the methods involve increasing a thickness of a non-porous barrier layer of the anodic film so as to create thin film interference effects that can add a particular hue to the anodic film. The methods can be used form cosmetically appealing coatings for consumer products, such as housings for electronic products.
Abstract:
Anodizing techniques for providing highly opaque colorized anodic films are described. According to some embodiments, the methods involve depositing a pigment having a particle diameter of about 20 nanometers or greater into an anodic film. Additionally or alternatively, a barrier layer smoothing operation is used to flatten an interface between the anodic film and underlying metal substrate so as to maximize light reflection off the interface, thereby maximizing light reflected off the pigment that is deposited within pores of the anodic film. The resulting anodic films have an opaque or saturated colored appearance. In some embodiments, the methods involve increasing a thickness of a non-porous barrier layer of the anodic film so as to create thin film interference effects that can add a particular hue to the anodic film. The methods can be used form cosmetically appealing coatings for consumer products, such as housings for electronic products.