Abstract:
A method and apparatus using temperature margin to balance performance with power allocation. Nominal, middle and high power levels are determined for compute elements. A set of temperature thresholds are determined that drive the power allocation of the compute elements towards a balanced temperature profile. For a given workload, temperature differentials are determined for each of the compute elements relative the other compute elements, where the temperature differentials correspond to workload utilization of the compute element. If temperature overhead is available, and a compute element is below a temperature threshold, then particular compute elements are allocated power to match or drive toward the balanced temperature profile.
Abstract:
A method and apparatus using temperature margin to balance performance with power allocation. Nominal, middle and high power levels are determined for compute elements. A set of temperature thresholds are determined that drive the power allocation of the compute elements towards a balanced temperature profile. For a given workload, temperature differentials are determined for each of the compute elements relative the other compute elements, where the temperature differentials correspond to workload utilization of the compute element. If temperature overhead is available, and a compute element is below a temperature threshold, then particular compute elements are allocated power to match or drive toward the balanced temperature profile.
Abstract:
A method and apparatus using temperature margin to balance performance with power allocation. Nominal, middle and high power levels are determined for compute elements. A set of temperature thresholds are determined that drive the power allocation of the compute elements towards a balanced temperature profile. For a given workload, temperature differentials are determined for each of the compute elements relative the other compute elements, where the temperature differentials correspond to workload utilization of the compute element. If temperature overhead is available, and a compute element is below a temperature threshold, then particular compute elements are allocated power to match or drive toward the balanced temperature profile.
Abstract:
A system and method for efficient management of operating modes within an integrated circuit (IC) for optimal power and performance targets. A semiconductor chip includes one or more processing units each of which operates with respective operating parameters. One or more temperature sensors are included to measure a temperature of the one or more processing units during operation. When the measured temperature exceeds a threshold, a power manager on the chip determines a temperature headroom utilizing temperature values based on worst-case ambient temperature. When the measured temperature does not exceed the threshold, the power manager determines the temperature headroom utilizing at least one temperature value based on room ambient temperature. Following, the power manager adjusts the respective operating parameters based on at least the temperature headroom.
Abstract:
An apparatus and method for efficiently managing balanced performance among replicated partitions of an integrated circuit despite loss of functionality due to manufacturing defects. A processing unit includes at least two replicated partitions, each assigned to operation parameters of a respective power domain. The partitions include multiple compute units. The compute units include multiple lanes of execution. Due to a variety of types of manufacturing defects, one or more of the partitions of the processing unit has less than a predetermined number of operational compute units. To balance the throughput of the multiple partitions, a power manager generates both static and dynamic scaling factors based on at least the corresponding number of operational compute units. Using these scaling factors, the power manager adjusts the operation parameters of power domains for the partitions relative to one another.
Abstract:
Platform power management includes boosting performance in a platform power boost mode or restricting performance to keep a power or temperature under a desired threshold in a platform power cap mode. Platform power management exploits the mutually exclusive nature of activities and the associated headroom created in a temperature and/or power budget of a server platform to boost performance of a particular component while also keeping temperature and/or power below a threshold or budget.
Abstract:
A processing system includes one or more power supply monitors (PSMs) to measure one or more first voltages corresponding to one or more locations in the processing system. The measurements are performed concurrently with the processing system executing one or more code loops. The processing system also includes calibration logic to modify a second voltage provided to the processing system based on a comparison of a reference voltage and the one or more first voltages. The reference voltage is determined based on previous execution of the one or more code loops by the processing system.
Abstract:
Platform power management includes boosting performance in a platform power boost mode or restricting performance to keep a power or temperature under a desired threshold in a platform power cap mode. Platform power management exploits the mutually exclusive nature of activities and the associated headroom created in a temperature and/or power budget of a server platform to boost performance of a particular component while also keeping temperature and/or power below a threshold or budget.
Abstract:
Platform power management includes boosting performance in a platform power boost mode or restricting performance to keep a power or temperature under a desired threshold in a platform power cap mode. Platform power management exploits the mutually exclusive nature of activities and the associated headroom created in a temperature and/or power budget of a server platform to boost performance of a particular component while also keeping temperature and/or power below a threshold or budget.
Abstract:
Platform power management includes boosting performance in a platform power boost mode or restricting performance to keep a power or temperature under a desired threshold in a platform power cap mode. Platform power management exploits the mutually exclusive nature of activities and the associated headroom created in a temperature and/or power budget of a server platform to boost performance of a particular component while also keeping temperature and/or power below a threshold or budget.