Abstract:
A method and apparatus using temperature margin to balance performance with power allocation. Nominal, middle and high power levels are determined for compute elements. A set of temperature thresholds are determined that drive the power allocation of the compute elements towards a balanced temperature profile. For a given workload, temperature differentials are determined for each of the compute elements relative the other compute elements, where the temperature differentials correspond to workload utilization of the compute element. If temperature overhead is available, and a compute element is below a temperature threshold, then particular compute elements are allocated power to match or drive toward the balanced temperature profile.
Abstract:
A method and apparatus using temperature margin to balance performance with power allocation. Nominal, middle and high power levels are determined for compute elements. A set of temperature thresholds are determined that drive the power allocation of the compute elements towards a balanced temperature profile. For a given workload, temperature differentials are determined for each of the compute elements relative the other compute elements, where the temperature differentials correspond to workload utilization of the compute element. If temperature overhead is available, and a compute element is below a temperature threshold, then particular compute elements are allocated power to match or drive toward the balanced temperature profile.
Abstract:
A method and apparatus using temperature margin to balance performance with power allocation. Nominal, middle and high power levels are determined for compute elements. A set of temperature thresholds are determined that drive the power allocation of the compute elements towards a balanced temperature profile. For a given workload, temperature differentials are determined for each of the compute elements relative the other compute elements, where the temperature differentials correspond to workload utilization of the compute element. If temperature overhead is available, and a compute element is below a temperature threshold, then particular compute elements are allocated power to match or drive toward the balanced temperature profile.
Abstract:
A method and apparatus using temperature margin to balance performance with power allocation. Nominal, middle and high power levels are determined for compute elements. A set of temperature thresholds are determined that drive the power allocation of the compute elements towards a balanced temperature profile. For a given workload, temperature differentials are determined for each of the compute elements relative the other compute elements, where the temperature differentials correspond to workload utilization of the compute element. If temperature overhead is available, and a compute element is below a temperature threshold, then particular compute elements are allocated power to match or drive toward the balanced temperature profile.