Abstract:
An illumination system is disclosed having a polarization member that includes first and second polarization modifiers movable into at least partial intersection with a radiation beam such that the respective polarization modifier applies a modified polarization to at least part of the beam. The illumination system further includes an array of individually controllable reflective elements positioned to receive the radiation beam after it has passed the polarization member, and a controller configured to control movement of the first and second polarization modifiers such that the first and second polarization modifiers intersect with different portions of the radiation beam.
Abstract:
A topography measurement system comprising a radiation source configured to generate a radiation beam, a spatially coded grating configured to pattern the radiation beam and thereby provide a spatially coded radiation beam, optics configured to form an image of the spatially coded grating at a target location on a substrate, detection optics configured to receive radiation re-fleeted from the target location of the substrate and form an image of the grating image at a second grating, and a detector configured to receive radiation transmitted through the second grating and produce an output signal.
Abstract:
Disclosed is a radiation source module and a radiation collector for the module with the radiation collector comprising a substrate coated with at least one reflective layer and a plurality of perforations within the reflective layer, with the plurality of holes forming vertices of a grid substantially covering the surface, and wherein the coating may comprise multiple layers.
Abstract:
A projection system, configured to project a radiation beam onto a target, includes a rotatable frame configured to rotate about an axis defining a tangential direction and a radial direction, wherein the rotatable frame holds a lens configured to focus the radiation beam in only the tangential or radial direction; and a stationary part comprising a substantially stationary lens configured to focus the radiation beam in only the other of the tangential or radial direction.
Abstract:
A device manufacturing method includes conditioning a beam of radiation using an illumination system. The conditioning includes controlling an array of individually controllable elements and associated optical components of the illumination system to convert the radiation beam into a desired illumination mode, the controlling including allocating different individually controllable elements to different parts of the illumination mode in accordance with an allocation scheme, the allocation scheme selected to provide a desired modification of one or more properties of the illumination mode, the radiation beam or both. The method also includes patterning the radiation beam having the desired illumination mode with a pattern in its cross-section to form a patterned beam of radiation, and projecting the patterned radiation beam onto a target portion of a substrate.
Abstract:
The present invention relates to an optical isolator for a seed laser, comprising: an acousto-optic modulator crystal configured to manipulate laser light incident thereto, and at least one cooling system configured to regulate a temperature of the crystal, said cooling system comprising: a cooling element including one or more channels for a fluidic cooling medium, a heat transfer assembly arranged between the crystal and the cooling element to transfer heat from the crystal to the cooling element, wherein the heat transfer assembly includes an active heat transfer element.
Abstract:
A device manufacturing method includes conditioning a beam of radiation using an illumination system. The conditioning includes controlling an array of individually controllable elements and associated optical components of the illumination system to convert the radiation beam into a desired illumination mode, the controlling including allocating different individually controllable elements to different parts of the illumination mode in accordance with an allocation scheme, the allocation scheme selected to provide a desired modification of one or more properties of the illumination mode, the radiation beam or both. The method also includes patterning the radiation beam having the desired illumination mode with a pattern in its cross-section to form a patterned beam of radiation, and projecting the patterned radiation beam onto a target portion of a substrate.