Abstract:
Embodiments of substrates supports for use in process chambers are provided herein. In some embodiments, a substrate support includes: a dielectric plate having a first side configured to support a substrate having a given diameter and including an annular groove disposed in the first side, wherein the annular groove has an inner diameter that is less than the given diameter and an outer diameter that is greater than the given diameter, wherein the dielectric plate includes a chucking electrode; an insert ring disposed in the annular groove of the dielectric plate; and an edge ring disposed on the dielectric plate, wherein the edge ring has an inner diameter that is greater than the given diameter and less than the outer diameter of the annular groove such that the edge ring is disposed over a portion of the insert ring.
Abstract:
Embodiments described herein relate to apparatus and methods for performing electron beam etching process. In one embodiment, a method of etching a substrate includes delivering a process gas to a process volume of a process chamber, applying a RF power to an electrode formed from a high secondary electron emission coefficient material disposed in the process volume, generating a plasma comprising ions in the process volume, bombarding the electrode with the ions to cause the electrode to emit electrons and form an electron beam, applying a negative DC power to the electrode, accelerating electrons emitted from the bombarded electrode toward a substrate disposed in the process chamber, and etching the substrate with the accelerated ions.
Abstract:
Embodiments of the disclosure provide a plasma source assembly and process chamber design that can be used for any number of substrate processing techniques. The plasma source may include a plurality of discrete electrodes that are integrated with a reference electrode and a gas feed structure to generate a uniform, stable and repeatable plasma during processing. The plurality of discrete electrodes include an array of electrodes that can be biased separately, in groups or all in unison, relative to a reference electrode. The plurality of discrete electrodes may include a plurality of conductive rods that are positioned to generate a plasma within a processing region of a process chamber. The plurality of discrete electrodes is provided RF power from standing or traveling waves imposed on a power distribution element to which the electrodes are connected.
Abstract:
Embodiments of substrate supports for use in substrate processing chambers are provided herein. In some embodiments, a substrate support for use in a substrate processing chamber includes: a pedestal having a first side configured to support a substrate and a second side opposite the first side; a plurality of substrate lift pins extending through the pedestal, wherein a plurality of first gaps are disposed between the plurality of substrate lift pins and respective ones of a plurality of substrate lift pin openings in the pedestal; and vacuum lines that extend from the plurality of substrate lift pin openings and that are configured to pump down the plurality of substrate lift pin openings.
Abstract:
Embodiments of the present invention provide a plasma chamber design that allows extremely symmetrical electrical, thermal, and gas flow conductance through the chamber. By providing such symmetry, plasma formed within the chamber naturally has improved uniformity across the surface of a substrate disposed in a processing region of the chamber. Further, other chamber additions, such as providing the ability to manipulate the gap between upper and lower electrodes as well as between a gas inlet and a substrate being processed, allows better control of plasma processing and uniformity as compared to conventional systems.
Abstract:
Apparatus for shielding a substrate support in a semiconductor processing chamber. In some embodiments, the apparatus includes: a substrate support body with a substrate processing surface, a feedthrough assembly for supporting the substrate support body in the semiconductor processing chamber, and a conductive member that provides a conductive path from a lowermost portion of the feedthrough assembly to the substrate processing surface of the substrate support body. The conductive member is disposed symmetrically about the substrate support.
Abstract:
Implementations described herein provide a substrate support assembly which enables tuning of a plasma within a plasma chamber. In one embodiment, a method for tuning a plasma in a chamber is provided. The method includes providing a first radio frequency power and a direct current power to a first electrode in a substrate support assembly, providing a second radio frequency power to a second electrode in the substrate support assembly at a different location than the first electrode, monitoring parameters of the first and second radio frequency power, and adjusting one or both of the first and second radio frequency power based on the monitored parameters.
Abstract:
Embodiments of the present disclosure generally provide various apparatus and methods for reducing particles in a semiconductor processing chamber. One embodiment of present disclosure provides a vacuum screen assembly disposed over a vacuum port to prevent particles generated by the vacuum pump from entering substrate processing regions. Another embodiment of the present disclosure provides a perforated chamber liner around a processing region of the substrate. Another embodiment of the present disclosure provides a gas distributing chamber liner for distributing a cleaning gas around the substrate support under the substrate supporting surface.
Abstract:
Embodiments of the present invention provide a plasma chamber design that allows extremely symmetrical electrical, thermal, and gas flow conductance through the chamber. By providing such symmetry, plasma formed within the chamber naturally has improved uniformity across the surface of a substrate disposed in a processing region of the chamber. Further, other chamber additions, such as providing the ability to manipulate the gap between upper and lower electrodes as well as between a gas inlet and a substrate being processed, allows better control of plasma processing and uniformity as compared to conventional systems.
Abstract:
Embodiments of the present invention provide a plasma chamber design that allows extremely symmetrical electrical, thermal, and gas flow conductance through the chamber. By providing such symmetry, plasma formed within the chamber naturally has improved uniformity across the surface of a substrate disposed in a processing region of the chamber. Further, other chamber additions, such as providing the ability to manipulate the gap between upper and lower electrodes as well as between a gas inlet and a substrate being processed, allows better control of plasma processing and uniformity as compared to conventional systems.