Abstract:
Embodiments of an electrostatic chuck are provided herein. In some embodiments, an electrostatic chuck for use in a substrate processing chamber includes a plate having a first side and a second side opposite the first side, a first electrode embedded in the plate proximate the first side, a second electrode embedded in the plate proximate the second side, a plurality of conductive elements coupling the first electrode to the second electrode, a first gas channel disposed within the plate and between the first electrode and the second electrode, a gas inlet extending from the second side of the plate to the first gas channel; and a plurality of gas outlets extending from the first side of the plate to the first gas channel.
Abstract:
Apparatus for controlling the thermal uniformity of a substrate are provided. The thermal uniformity of the substrate may be controlled to be more uniform or the thermal uniformity of the substrate may be controlled to be non-uniform in a desired pattern. In some embodiments, an apparatus for controlling the thermal uniformity of a substrate includes: a substrate support having a support surface to support a substrate thereon; and a flow path disposed within the substrate support to flow a heat transfer fluid beneath the support surface, wherein the flow path comprises a first portion and a second portion, each portion having a substantially equivalent axial length, wherein the first portion is spaced about 2 mm to about 10 mm from the second portion, and wherein the first portion provides a flow of heat transfer fluid in a direction opposite a flow of heat transfer fluid of the second portion.
Abstract:
Methods and apparatus for plasma processing are provided herein. In some embodiments, a plasma processing apparatus includes a process chamber having an interior processing volume; a first RF coil disposed proximate the process chamber to couple RF energy into the processing volume; and a second RF coil disposed proximate the process chamber to couple RF energy into the processing volume, the second RF coil disposed coaxially with respect to the first RF coil, wherein the first and second RF coils are configured such that RF current flowing through the first RF coil is out of phase with RF current flowing through the RF second coil.
Abstract:
Methods for processing a substrate are provided herein. In some embodiments, a method of etching a dielectric layer includes generating a plasma by pulsing a first RF source signal having a first duty cycle; applying a second RF bias signal having a second duty cycle to the plasma; applying a third RF bias signal having a third duty cycle to the plasma, wherein the first, second, and third signals are synchronized; adjusting a phase variance between the first RF source signal and at least one of the second or third RF bias signals to control at least one of plasma ion density non-uniformity in the plasma or charge build-up on the dielectric layer; and etching the dielectric layer with the plasma.
Abstract:
Methods for reducing the line width roughness on a photoresist pattern are provided herein. In some embodiments, a method of processing a patterned photoresist layer disposed atop a substrate includes flowing a process gas into a processing volume of a process chamber having the substrate disposed therein; forming a plasma within the process chamber from the process gas, wherein the plasma has a ion energy of about 1 eV to about 10 eV; and etching the patterned photoresist layer with species from the plasma to at least one of smooth a line width roughness of a sidewall of the patterned photoresist layer or remove debris.
Abstract:
A plasma reactor for processing a workplace includes a reactor chamber having a ceiling and a sidewali and a workplace support facing the ceiling and defining a processing region, and a pair of concentric independently excited RF coil antennas overlying the ceiling and a side RF coil concentric with the side wall and facing the side wall below the ceiling, and being excited independently.
Abstract:
A plasma reactor enclosure has a metallic portion and a dielectric portion of plural dielectric windows supported on the metallic portion, each of the dielectric windows extending around an axis of symmetry. Plural concentric coil antennas are disposed on an external side of the enclosure, respective ones of the coil antennas facing respective ones of the dielectric windows.
Abstract:
An RF current probe is encapsulated in a conductive housing to permit its placement inside a plasma reactor chamber. An RF voltage probe is adapted to have a long coaxial cable to permit a measuring device to be connected remotely from the probe without distorting the voltage measurement.
Abstract:
Embodiments of the present invention provide a plasma chamber design that allows extremely symmetrical electrical, thermal, and gas flow conductance through the chamber. By providing such symmetry, plasma formed within the chamber naturally has improved uniformity across the surface of a substrate disposed in a processing region of the chamber. Further, other chamber additions, such as providing the ability to manipulate the gap between upper and lower electrodes as well as between a gas inlet and a substrate being processed, allows better control of plasma processing and uniformity as compared to conventional systems.
Abstract:
Methods and apparatus for plasma processing are provided herein. In some embodiments, a plasma processing apparatus includes a process chamber having an interior processing volume; a first RF coil disposed proximate the process chamber to couple RF energy into the processing volume; and a second RF coil disposed proximate the process chamber to couple RF energy into the processing volume, the second RF coil disposed coaxially with respect to the first RF coil, wherein the first and second RF coils are configured such that RF current flowing through the first RF coil is out of phase with RF current flowing through the RF second coil.