Abstract:
Embodiments of the present disclosure generally provide various apparatus and methods for reducing particles in a semiconductor processing chamber. One embodiment of present disclosure provides a vacuum screen assembly disposed over a vacuum port to prevent particles generated by the vacuum pump from entering substrate processing regions. Another embodiment of the present disclosure provides a perforated chamber liner around a processing region of the substrate. Another embodiment of the present disclosure provides a gas distributing chamber liner for distributing a cleaning gas around the substrate support under the substrate supporting surface.
Abstract:
Embodiments of the present disclosure generally provide various apparatus and methods for reducing particles in a semiconductor processing chamber. One embodiment of present disclosure provides a vacuum screen assembly disposed over a vacuum port to prevent particles generated by the vacuum pump from entering substrate processing regions. Another embodiment of the present disclosure provides a perforated chamber liner around a processing region of the substrate. Another embodiment of the present disclosure provides a gas distributing chamber liner for distributing a cleaning gas around the substrate support under the substrate supporting surface.
Abstract:
Methods for etching a material layer disposed on the substrate using a combination of a main etching step and a cyclical etching process are provided. The method includes performing a main etching process in a processing chamber to an oxide layer, forming a feature with a first predetermined depth in the oxide layer, performing a treatment process on the substrate by supplying a treatment gas mixture into the processing chamber to treat the etched feature in the oxide layer, performing a chemical etching process on the substrate by supplying a chemical etching gas mixture into the processing chamber, wherein the chemical etching gas includes at least an ammonium gas and a nitrogen trifluoride, wherein the chemical etching process further etches the feature to a second predetermined depth, and performing a transition process on the etched substrate by supplying a transition gas mixture into the processing chamber.
Abstract:
Methods for etching an etching stop layer disposed on the substrate using a cyclical etching process are provided. In one embodiment, a method for etching an etching stop layer includes performing a treatment process on the substrate having a silicon nitride layer disposed thereon by supplying a treatment gas mixture into the processing chamber to treat the silicon nitride layer, and performing a chemical etching process on the substrate by supplying a chemical etching gas mixture into the processing chamber, wherein the chemical etching gas mixture includes at least an ammonium gas and a nitrogen trifluoride, wherein the chemical etching process etches the treated silicon nitride layer.