Abstract:
A clock-tree construction method for a configurable clock grid structure having a plurality of sectors and a plurality of wire segments includes defining a clock region within the clock grid structure and constructing an H-tree that has a smallest size to cover the clock region. The method further includes aligning the clock region within the H-tree, pruning the H-tree and removing an unused segment from the H-tree. The method further includes performing a tree height reduction procedure to the pruned H-tree, and generating a clock tree with a reduced size or a reduced height from the tree height reduction procedure.
Abstract:
Integrated circuits such as application specific integrated circuits or programmable logic devices may include multiple copies of a same circuit together with a majority vote circuit in a configuration that is sometimes also referred to as multi-mode redundancy. An adder circuit may be coupled to these multiple copies and produce a carry-out signal and a sum signal based on signals received from the multiple copies. The carry-out signal of the adder circuit may provide the result of the majority vote operation. A logic exclusive OR gate may perform a logic exclusive OR operation between the sum signal and the carry-out signal, thereby generating an error signal. The error signal may indicate that one of the multiple copies produces an output that is different than the outputs produced by the other copies.
Abstract:
Systems and methods for providing a Network-On-Chip (NoC) structure on an integrated circuit for high-speed data passing. In some aspects, the NoC structure includes multiple NoC stations with a hard-IP interface having a bidirectional connection to local components of the integrated circuit. In some aspects, the NoC stations have a soft-IP interface that supports the hard-IP interface of the NoC station.
Abstract:
Systems and methods are provided herein for providing an NoC including a configurable array of nodes, where a node of the configurable array of nodes operates in a default operating mode until a replacement operating mode is triggered. For example, when an NoC is unconfigured, a latch bank may be initialized to “clear,” such that no routing decisions are stored. This may enable a default operating mode where routing logic updates the latches' values as needed to implement required routing behavior in a dynamic fashion until configuration is performed.
Abstract:
Systems and methods and systems are disclosed for allowing the medium access control (MAC) layer in a communication system within an integrated circuit or device to accurately determine a timestamp point and a timestamp value when, for example, the Precision Time Protocol (PTP) protocol is in use by the communication system. Such determination of accurate timestamp point and timestamp value may be used by the communication system to account for and to compensate for the time shift(s) from forward error correction (FEC) sublayer changes in a data frame that is transmitted by the MAC layer. Feedback is provided to the MAC from the FEC to allow the MAC to accurately determine the timestamp point and timestamp value align preamble of the data frame to the beginning of the FEC bit block that is output by the FEC sublayer.
Abstract:
Systems and methods relating to a programmable circuit. The programmable circuit includes multiple sectors. Each sector includes configurable functional blocks, configurable routing wires, configuration bits for storing configurations for the functional blocks and routing wires, and local control circuitry for interfacing with the configuration bits to configure the sector. The programmable circuit may include global control circuitry for interfacing with the local control circuitry to configure the sector. Each sector may be independently operable and/or operable in parallel with other sectors. Operating the programmable circuit may include using the local control circuitry to interface with the configurations bit and configure the sector. Additionally, operating the programmable circuit may include using the global control circuitry to interface with respective local control circuitry and configure the sector.
Abstract:
Systems and methods for a low hold-time sequential input stage provide circuitry that includes a first latch element receiving a first input. The first latch element is connected to a first two-input multiplexer. The circuitry further includes a second latch element receiving a second input. The second latch element is connected to the first two-input multiplexer. The first input and the second input originate from different input cells of an input column that receive a same source signal.
Abstract:
Systems and methods for a low hold-time sequential input stage provide circuitry that includes a first latch element receiving a first input. The first latch element is connected to a first two-input multiplexer. The circuitry further includes a second latch element receiving a second input. The second latch element is connected to the first two-input multiplexer. The first input and the second input originate from different input cells of an input column that receive a same source signal.
Abstract:
A method for designing a system on a target device includes mapping a high-level description of the system onto a model of a target device prior to generating a register transfer level description of the system. A visual representation of the mapping is generated.
Abstract:
Circuitry accepts an input signal and distributes the input signal to a plurality of locations within the circuitry. The circuitry includes a first circuit element and a second circuit element. The circuitry further includes a first plurality of wire segments that are substantially aligned to form a first bundle, and include a first wire segment. The circuitry further includes a second plurality of wire segments that are substantially aligned to form a second bundle, and have a second wire segment. An intersection element of the first bundle and the second bundle includes a first interconnecting wire segment that connects the first wire segment and the second wire segment, and the input signal is routed from the first wire segment to the second wire segment via the first interconnecting wire segment. The input signal is further transmitted to the second element from the second wire segment.