Abstract:
A projection system (400) capable of projection alignment includes a projector (410), a shaped projection screen (420), one or more alignment marks (425), an image sensor (430), and a processing unit (440). The projector is configured to project an image. The shaped projection screen is configured to receive the projected image and display the projected image, the projector having a projection area (415) on the shaped projection screen. The one or more alignment marks are proximate to a border of the projection screen. The image sensor is configured to capture an image of the shaped projection screen and generate a sensor signal corresponding to the captured image. The processing unit is electronically coupled to the image sensor and configured to receive the sensor signal and determine the positions of the one or more alignment marks based on the sensor signal.
Abstract:
A method and system for monitoring impairment indicators. The method includes, during a first time window, measuring a first movement signal related to movement of the person with a movement sensor associated with the person, and measuring a first biological signal of the person with a biological sensor attached to the person. The method further includes electronically storing at least one numerical descriptor derived from the first movement signal and at least one numerical descriptor derived from the first biological signal as reference data for the person. The method includes during a second time window, measuring a second signal related to movement of the person with the movement sensor, and measuring a second biological signal of the person with the biological sensor. The method further includes comparing at least one numerical descriptor derived from the second signal and at least one numerical descriptor derived from the second biological signal to the reference data to identify an impairment indicator.
Abstract:
The present disclosure includes an article of PPE. The device includes a first sensor that detects whether the article of PPE is being worn by a user, a processing module and a communications module. The processing module includes a clock that measures the length of time that the article of PPE is being worn by the user, and memory for storage of usage data, wherein usage data includes the length of time the article of PPE has been worn by the user. The communications module is for wirelessly transmitting stored usage data to a device separate from the article of PPE.
Abstract:
Computer-implemented systems and methods for estimating a replacement status of an HVAC air filter. Outdoor weather data (e.g., outdoor temperature information), is obtained. A Total Runtime Value of the HVAC system is determined based upon the obtained outdoor weather data. Finally, a replacement status of the air filter is estimated as a function of a comparison of the Total Runtime Value with a Baseline Value. By correlating air filter replacement status with an estimated runtime of the HVAC system, a credible predictor of air filter usage is provided. By estimating fan runtime based on easily-obtained outdoor weather data, the methods are readily implemented with any existing HVAC system and do not require installation of sensors or other mechanical or electrical components to the HVAC system.
Abstract:
In some examples, a system includes an article of personal protective equipment (PPE) having at least one sensor configured to generate a stream of usage data; and an analytical stream processing component comprising: a communication component that receives the stream of usage data; a memory configured to store at least a portion of the stream of usage data and at least one model for detecting a safety event signature, wherein the at least one model is trained based as least in part on a set of usage data generated by one or more other articles of PPE of a same type as the article of PPE; and one or more computer processors configured to: detect the safety event signature in the stream of usage data based on processing the stream of usage data with the model, and generate an output in response to detecting the safety event signature.
Abstract:
A method for monitoring impairment indicators, the method includes measuring, with a movement sensor attached to the person, a first signal related to movement of a person during a first time window and electronically storing the at least one numerical descriptor derived from the first signal as reference data for the person. The method further includes measuring, with the movement sensor attached to the person, a second signal related to movement of the person during a second time window and comparing at least one numerical descriptor derived from the second signal to the reference data as a factor to identify an impairment indicator. The present disclosure also includes a device for monitoring impairment indicators.
Abstract:
In some examples, a system includes: an article of personal protective equipment (PPE) that includes a communication component; a computing device communicatively coupled to the article of PPE, wherein the computing device: receives context data that is based on one or more of the article of PPE, a work environment for the article of PPE, or a worker assigned to the article of PPE; selects, based at least in part on the context data, a set of programmable safety rules that are contextually associated with the at least one article of PPE; sends the programmable safety rules to one or more of the article of PPE or a data hub communicatively coupled to the article of PPE; and wherein the programmable safety rules are configured at the article of PPE or the data hub to perform one or more operations based at least in part on PPE data.
Abstract:
In some examples, a system includes an article of personal protective equipment (PPE) comprising one or more sensors, the one or more sensors configured to generate usage data that is indicative of an operation of the article of PPE; and at least one computing device comprising a memory and one or more computer processors that: receive the usage data that is indicative of the operation of the article of PPE; apply the usage data to a safety learning model that predicts a likelihood of an occurrence of a safety event associated with the article of PPE based at least in part on previously generated usage data that corresponds to the safety event; and perform, based at least in part on predicting the likelihood of the occurrence of the safety event, at least one operation.
Abstract:
A method and system for monitoring impairment indicators. The method comprises, during a first time window, measuring a first movement signal related to movement of a person with a movement sensor associated with the person, and measuring a first environmental signal with an environmental sensor. The method further comprises electronically storing at least one numerical descriptor derived from the first movement signal and the first environmental signal as reference data for the person. The method further includes, during a second time window, measuring a second movement signal related to movement of the person with the movement sensor and measuring a second environmental signal with the environmental sensor; and comparing at least one numerical descriptor derived from the second movement signal and the second environmental signal to the reference data to identify an impairment indicator.