Abstract:
In an example, an example article may include a spatially variant microreplicated layer optically coupled to a wavelength selective filter. The wavelength selective filter may have a light incidence angle-dependent optical band. The spatially variant microreplicated layer may be configured to transmit light to a first optical region of the wavelength selective filter at a first predetermined incidence angle and to a second optical region of the wavelength selective filter at a second predetermined incidence angle.
Abstract:
A technique of determining the presence of a species in a sample may include passing light through an optical filter. In an example, the optical filter may include a spatially variant microreplicated layer optically coupled to a wavelength selective filter. The wavelength selective filter may have a light incidence angle-dependent optical band. The spatially variant microreplicated layer may be configured to transmit light to a first optical region of the wavelength selective filter at a first predetermined incidence angle and to a second optical region of the wavelength selective filter at a second predetermined incidence angle.
Abstract:
A projection system (400) capable of projection alignment includes a projector (410), a shaped projection screen (420), one or more alignment marks (425), an image sensor (430), and a processing unit (440). The projector is configured to project an image. The shaped projection screen is configured to receive the projected image and display the projected image, the projector having a projection area (415) on the shaped projection screen. The one or more alignment marks are proximate to a border of the projection screen. The image sensor is configured to capture an image of the shaped projection screen and generate a sensor signal corresponding to the captured image. The processing unit is electronically coupled to the image sensor and configured to receive the sensor signal and determine the positions of the one or more alignment marks based on the sensor signal.
Abstract:
A recycling cavity such as used in a backlight or similar extended area source includes a front and back reflector, the front reflector being partially transmissive to provide an output illumination area. The recycling cavity also includes a component that provides the cavity with a balance of specular and diffuse characteristics so as to balance cavity efficiency and brightness uniformity over the output area. The component can be characterized by a transport ratio of greater than 15% for a 15 degree incidence angle, and less than 95% for a 45 degree incidence angle.