Abstract:
The present disclosure provides adhesive articles that can be removed from surfaces without damage by having reduced or eliminated contribution of a core backing to peel force generated by the adhesive during removal. In some instances, this can be accomplished by a core that loses structural integrity in a direction normal to a plane defined by a major surface. In other instances, the contribution is reduced by compromising the interface between the core and a peelable adhesive layer.
Abstract:
Medical dressings and methods of using same. The medical dressing can include a fluid management article. The fluid management article can include a fibrous substrate and porous polymeric particles. At least 50% of the porous polymeric particles are bound to the fibrous substrate. Methods of using the medical dressings can include applying the medical dressing to the target site, such that the fluid management article is in fluid communication with the target site.
Abstract:
The present disclosure provides adhesive articles that can be removed from surfaces without damage by having reduced or eliminated contribution of a core backing to peel force generated by the adhesive during removal. In some instances, this can be accomplished by a core that loses structural integrity in a direction normal to a plane defined by a major surface. In other instances, the contribution is reduced by compromising the interface between the core and a peelable adhesive layer.
Abstract:
The present disclosure relates to porous electrodes and electrochemical cells and liquid flow batteries produced therefrom. The disclosure further provides methods of making electrodes. The porous electrodes include polymer, e.g. non-electrically conductive polymer particulate fiber, and an electrically conductive carbon particulate. The non-electrically conductive, polymer particulate fibers may be in the form of a first porous substrate, wherein the first porous substrate is at least one of a woven or nonwoven paper, felt, mat and cloth. The porous electrode may have an electrical resistivity of less than about 100000 μOhm·m. The porous electrode may have a thickness from about 10 microns to about 1000 microns. Electrochemical cells and liquid flow batteries may be produced from the porous electrodes of the present disclosure.
Abstract:
Films and articles are described comprising a microstructured surface having an array of peak structures and adjacent valleys. For improved cleanability, the valleys preferably have a maximum width ranging from 10 microns to 250 microns and the peak structures have a side wall angle greater than 10 degrees. The peak structures may comprise two or more facets such as in the case of a linear array of prisms or an array of cube-corners elements. The facets form continuous or semi-continuous surfaces in the same direction. The valleys typically lack intersecting walls. Also described are methods of making and methods of use. The microstructured surface of the article can be prepared by various microreplication techniques such as coating, injection molding, embossing, laser etching, extrusion, casting and curing a polymerizable resin; and bonding microstructured film to a surface or article with an adhesive.
Abstract:
The present disclosure relates to porous electrodes, membrane-electrode assemblies, electrode assemblies and electro-chemical cells and liquid flow batteries produced therefrom. The disclosure further provides methods of making porous electrodes, membrane-electrode assemblies and electrode assemblies. The porous electrodes include a porous electrode material comprising a non-electrically conductive, polymer particulate; and an electrically conductive carbon particulate; wherein the electrically conductive carbon particulate is at least one of carbon nanotubes and branched carbon nanotubes. The electrically conductive carbon particulate is adhered directly to the surface of the non-electrically conductive, polymer particulate and at least a portion of the non-electrically conductive polymer particulate surface is fused to form a unitary, porous electrode material.
Abstract:
Nonwoven webs are described wherein the web has an inverted MVTR of at least 10,000 g/m2/24 h and a resistance to water penetration of at least 10 min according to EN-20811. In a favored embodiment, the nonwoven web comprises a multi-component fiber. Also described are multi-component fiber comprising a core and outer layer and nonwoven webs comprising such. At least a portion of the outer layer comprises a first melt processable composition comprising a polydiorganosiloxane polyamide copolymer. The core comprises a second melt processable composition that does not comprise a polydiorganosiloxane polymer. The multi-component fiber comprises 5 to 25 wt-% of the polydiorganosiloxane polyamide copolymer
Abstract translation:描述了非织造纤维网,其中根据EN-20811,幅材具有至少10,000g / m 2/24小时的倒置MVTR和至少10分钟的水渗透阻力。 在有利的实施例中,非织造纤维网包括多组分纤维。 还描述了包含芯和外层的多组分纤维和包含这种纤维的非织造纤维网。 外层的至少一部分包括含有聚二有机硅氧烷聚酰胺共聚物的第一可熔融加工组合物。 核心包括不包含聚二有机硅氧烷聚合物的第二可熔融加工组合物。 多组分纤维包含5至25重量%的聚二有机硅氧烷聚酰胺共聚物
Abstract:
Films and articles are described comprising a microstructured surface having an array of peak structures and adjacent valleys. For improved cleanability, the valleys preferably have a maximum width ranging from 10 microns to 250 microns and the peak structures have a side wall angle greater than 10 degrees. The peak structures may comprise two or more facets such as in the case of a linear array of prisms or an array of cube-corners elements. The facets form continuous or semi-continuous surfaces in the same direction. The valleys typically lack intersecting walls. Also described are methods of making and methods of use. The microstructured surface of the article can be prepared by various microreplication techniques such as coating, injection molding, embossing, laser etching, extrusion, casting and curing a polymerizable resin; and bonding microstructured film to a surface or article with an adhesive.
Abstract:
The present disclosure relates to porous electrodes, membrane-electrode assemblies, electrode assemblies and electrochemical cells and liquid flow batteries produced therefrom. The disclosure further provides methods of making porous electrodes, membrane-electrode assemblies and electrode assemblies. The porous electrodes include a porous electrode material comprising a polymer and an electrically conductive carbon particulate; and a solid film substrate having a first major surface and a second major surface, wherein the solid film substrate includes a plurality of through holes extending from the first major surface to the second major surface. The porous electrode material is disposed on at least the first major surface and within the plurality of through holes of the solid film substrate. The plurality of through holes with the porous electrode material provide electrical communication between the first major surface and the opposed second major surface of the porous electrode.
Abstract:
The present disclosure relates to porous electrodes, membrane-electrode assemblies, electrode assemblies and electrochemical cells and liquid flow batteries produced therefrom. The disclosure further provides methods of making electrodes, membrane-electrode assemblies and electrode assemblies. The porous electrodes include polymer, e.g. non-electrically conductive polymer particulate fiber, and an electrically conductive carbon particulate. The non-electrically conductive, polymer particulate fibers may be in the form of a first porous substrate, wherein the first porous substrate is at least one of a woven or nonwoven paper, felt, mat and cloth. Membrane-electrode assemblies and electrode assemblies may be produced from the porous electrodes of the present disclosure. Electrochemical cells and liquid flow batteries may be produced from the porous electrodes, membrane-electrode assemblies and electrode assemblies of the present disclosure.