Electron gun with magnetic immersion double condenser lenses
    1.
    发明授权
    Electron gun with magnetic immersion double condenser lenses 有权
    电子枪与磁浸双重聚光镜

    公开(公告)号:US07893406B1

    公开(公告)日:2011-02-22

    申请号:US11476411

    申请日:2006-06-27

    IPC分类号: H01J1/50

    摘要: An electron gun comprises an electron emitter, an electrode surrounding the electron emitter, an extraction electrode, and a double condenser lens assembly, the double condenser lens assembly comprising a magnetic immersion pre-condenser lens and a condenser lens. In combination with a probe forming objective lens, the electron gun apparatus can provide an electron beam of independently adjustable probe size and probe current, as is desirable in electron beam applications. The electron emitter is immersed in the magnetic field generated by a magnetic type pre-condenser lens. When activated, the pre-condenser lens collimates the beam effectively to increase its angular intensity while at the same time enlarging the virtual source as compared with non-immersion case, due to geometric magnification and aberrations of its lens action. The pre-condenser lens is followed by a condenser lens. If the condenser lens is of the magnetic type, its peak magnetic field is far enough away and thus its action does not significantly affect the size of the virtual source. Independent adjustment of the lenses, combined with suitable selection of final probe forming objective aperture size, allows various combination of the final probe size and probe current to be obtained in a range sufficient for most electron beam applications.

    摘要翻译: 电子枪包括电子发射器,围绕电子发射体的电极,引出电极和双重聚光透镜组件,双重聚光透镜组件包括磁性浸入式预聚光透镜和聚光透镜。 与形成物镜的探针组合,如在电子束应用中所希望的那样,电子枪装置可以提供独立可调的探针尺寸和探针电流的电子束。 将电子发射器浸入由磁式预聚光透镜产生的磁场中。 当激活时,由于几何放大和其透镜作用的像差,预聚焦透镜有效地准直光束以增加其角度强度,同时与非浸没情况相比放大虚拟光源。 预聚光透镜之后是聚光透镜。 如果聚光透镜是磁性的,则其峰值磁场足够远,因此其作用不会显着影响虚拟源的尺寸。 透镜的独立调整结合适当选择最终探针形成物镜孔径的尺寸允许在足以满足大多数电子束应用的范围内获得最终探针尺寸和探针电流的各种组合。

    ELECTRON BEAM APPARATUS
    4.
    发明申请
    ELECTRON BEAM APPARATUS 失效
    电子束设备

    公开(公告)号:US20090294664A1

    公开(公告)日:2009-12-03

    申请号:US12130879

    申请日:2008-05-30

    IPC分类号: G01N23/00

    摘要: The present invention includes an electron beam device for examining defects on semiconductor devices. The device includes an electron source for generating a primary electron beam, wherein the total acceleration potential is divided and is provided across the ground potential. Also included is at least one condenser lens for pre-focusing the primary electron beam, an aperture for confining the primary electron beam to ameliorate electron-electron interaction, wherein the aperture is positioned right underneath the last condenser lens, and a SORIL objective lens system for forming immersion magnetic field and electrostatic field to focus the primary beam onto the specimen in the electron beam path. A pair of grounding rings for providing virtual ground voltage potential to those components within the electron beam apparatus installed below a source anode and above a last polepiece of the SORIL objective lens.

    摘要翻译: 本发明包括用于检查半导体器件上的缺陷的电子束装置。 该装置包括用于产生一次电子束的电子源,其中总加速电位被分开并提供在地电位之间。 还包括至少一个用于预聚焦一次电子束的聚光透镜,用于限制一次电子束以改善电子 - 电子相互作用的孔,其中孔位于最后的聚光透镜的正下方,以及SORIL物镜系统 用于形成浸没磁场和静电场,以将主光束聚焦在电子束路径中的样本上。 一对接地环,用于为安装在源极阳极和SORIL物镜的最后一个极点之上的电子束装置内的那些部件提供虚拟接地电压电位。

    CHARGED PARTICLE DETECTION DEVICES
    5.
    发明申请
    CHARGED PARTICLE DETECTION DEVICES 失效
    充电颗粒检测装置

    公开(公告)号:US20090090866A1

    公开(公告)日:2009-04-09

    申请号:US11668846

    申请日:2007-01-30

    IPC分类号: G01T1/20 G01N23/00 H01J3/14

    摘要: A charged particle detector consists of four independent light guide modules assembled together to form a segmented on-axis annular detector, with a center opening for allowing the primary charged particle beam to pass through. One side of the assembly facing the specimen is coated with or bonded to scintillator material as the charged particle detection surface. Each light guide module is coupled to a photomultiplier tube to allow light signals transmitted through each light guide module to be amplified and processed separately. A charged particle detector is made from a single block of light guide material processed to have a cone shaped circular cutout from one face, terminating on the opposite face to an opening to allow the primary charged particle beam to pass through. The opposite face is coated with or bonded to scintillator material as the charged particle detection surface. The outer region of the light guide block is shaped into four separate light guide output channels and each light guide output channel is coupled to a photomultiplier tube to allow light signal output from each channel to be amplified and processed separately.

    摘要翻译: 带电粒子检测器由四个独立的光导模块组成,组合在一起以形成分段的轴上环形探测器,其中心开口允许初级带电粒子束通过。 面向样品的组件的一侧作为带电粒子检测表面涂覆或结合到闪烁体材料。 每个光导模块耦合到光电倍增管,以允许通过每个光导模块传输的光信号被单独放大和处理。 带电粒子检测器由一块光导材料制成,被处理成具有从一个面的锥形圆形切口,终止在与开口相对的面上以允许初级带电粒子束通过。 相反的面被涂覆或与闪烁体材料结合,作为带电粒子检测表面。 导光块的外部区域被成形为四个分开的光导输出通道,并且每个光导输出通道耦合到光电倍增管,以允许来自每个通道的光信号输出被单独放大和处理。

    Swinging objective retarding immersion lens electron optics focusing, deflection and signal collection system and method

    公开(公告)号:US06392231B1

    公开(公告)日:2002-05-21

    申请号:US09513306

    申请日:2000-02-25

    申请人: Zhong-Wei Chen

    发明人: Zhong-Wei Chen

    IPC分类号: H01J37141

    摘要: A swinging objective retarding immersion lens system and method therefore which provide a low voltage electron beam with high beam current, relatively high spatial resolution, a relative large scan field, and high signal collection efficiency. The objective lens includes a magnetic lens for generating a magnetic field in the vicinity of the specimen to focus the particles of the particle beam on the specimen, an electrode having a potential for providing a retarding field to the particle beam near the specimen to reduce the energy of the particle beam when the beam collides with the specimen; a deflection system including a plurality of deflection units situated along the beam axis for deflecting the particle beam to allow scanning on the specimen with large area, at least one of the deflection units located in the retarding field of the beam, the remainder of the deflection units located within the central bore of the magnetic lens; and a annular detection unit with a relatively small aperture, located underneath the primary beam define aperture, to capture secondary electron (SE) and backscattered electrons (BSE).

    THERMAL FIELD EMISSION CATHODE
    7.
    发明申请
    THERMAL FIELD EMISSION CATHODE 有权
    热场发射阴极

    公开(公告)号:US20090315444A1

    公开(公告)日:2009-12-24

    申请号:US12145036

    申请日:2008-06-24

    IPC分类号: H01J19/24

    摘要: A thermal field emission cathode which is employed in an electron microscope, a critical dimension examine tool, an electron beam lithograph machine, an electron beam tester and other electron beam related systems as an electron source is disclosed. Embodiments disclose changing coating shape, coating position and shorten emitter length to extend the lifetime of the field emission cathode.

    摘要翻译: 公开了一种在电子显微镜中使用的热场发射阴极,临界尺寸检查工具,电子束光刻机,电子束测试仪和其他电子束相关系统作为电子源。 实施例公开了改变涂层形状,涂层位置和缩短发射极长度以延长场致发射阴极的寿命。

    CHARGED PARTICLE DETECTION DEVICES
    8.
    发明申请
    CHARGED PARTICLE DETECTION DEVICES 失效
    充电颗粒检测装置

    公开(公告)号:US20080315094A1

    公开(公告)日:2008-12-25

    申请号:US12204282

    申请日:2008-09-04

    IPC分类号: G01N23/00

    摘要: A charged particle detector consists of a plurality independent light guide modules assembled together to form a segmented in-lens on-axis annular detector, with a center hole for allowing the primary charged particle beam to pass through. One side of the assembly facing the specimen is coated with or bonded to scintillator material as the charged particle detection surface. Each light guide module is coupled to a photomultiplier tube to allow light signals transmitted through each light guide module to be amplified and processed separately. A charged particle detector is made from a single block of light guide material processed to have a cone shaped circular cutout from one face, terminating on the opposite face to an opening to allow the primary charged particle beam to pass through. The opposite face is coated with or bonded to scintillator material as the charged particle detection surface. The outer region of the light guide block is shaped into four separate light guide output channels and each light guide output channel is coupled to a photomultiplier tube to allow light signal output from each channel to be amplified and processed separately.

    摘要翻译: 带电粒子检测器由多个独立的光导模块组成,组合在一起以形成分段的透镜内轴环形探测器,其中心孔用于允许初级带电粒子束通过。 面向样品的组件的一侧作为带电粒子检测表面涂覆或结合到闪烁体材料。 每个光导模块耦合到光电倍增管,以允许通过每个光导模块传输的光信号被单独放大和处理。 带电粒子检测器由一块光导材料制成,被处理成具有从一个面的锥形圆形切口,终止在与开口相对的面上以允许初级带电粒子束通过。 相反的面被涂覆或与闪烁体材料结合,作为带电粒子检测表面。 导光块的外部区域被成形为四个分开的光导输出通道,并且每个光导输出通道耦合到光电倍增管,以允许来自每个通道的光信号输出被单独放大和处理。

    System and method for sample charge control
    9.
    发明授权
    System and method for sample charge control 有权
    样品充电控制系统和方法

    公开(公告)号:US07335879B2

    公开(公告)日:2008-02-26

    申请号:US11203674

    申请日:2005-08-12

    申请人: Zhong-Wei Chen

    发明人: Zhong-Wei Chen

    IPC分类号: G01N23/00

    摘要: A system and method for characterizing and charging a sample. The system includes a vacuum chamber, a first apparatus in the vacuum chamber and configured to characterize a sample, and a second apparatus in the vacuum chamber and configured to charge the sample. The second apparatus includes an electron gun configured to provide an electron beam to the sample and including an emission cathode biased to a first voltage relative to a reference voltage, a sample holder configured to support the sample, and a mesh located between the electron gun and the sample holder. Additionally, the second apparatus includes a first voltage supply configured to bias the mesh to a second voltage relative to the sample holder, and a second voltage supply configured to bias the sample holder to a third voltage relative to the reference voltage.

    摘要翻译: 用于表征和充电样品的系统和方法。 该系统包括真空室,真空室中的第一装置,并且构造成表征样品;以及第二装置,其被配置成对样品充电。 第二装置包括电子枪,其构造成向样品提供电子束,并且包括相对于参考电压偏置到第一电压的发射阴极,被配置为支撑样品的样品保持器,以及位于电子枪和 样品架。 另外,第二装置包括配置成相对于样品架保持器将网状物偏压到第二电压的第一电压源,以及配置为将样品架保持器相对于参考电压偏置到第三电压的第二电压源。

    ELECTRON BEAM APPARATUS TO COLLECT SIDE-VIEW AND/OR PLANE-VIEW IMAGE WITH IN-LENS SECTIONAL DETECTOR
    10.
    发明申请
    ELECTRON BEAM APPARATUS TO COLLECT SIDE-VIEW AND/OR PLANE-VIEW IMAGE WITH IN-LENS SECTIONAL DETECTOR 有权
    用电子束装置收集侧视图和/或平面视图与内窥镜部分检测器

    公开(公告)号:US20080006771A1

    公开(公告)日:2008-01-10

    申请号:US11755705

    申请日:2007-05-30

    IPC分类号: G01N23/00

    摘要: An electron beam apparatus and method are presented for collecting side-view and plane-view SEM imagery. The electron beam apparatus includes an electron source, some intermediate lenses if needed, an objective lens and an in-lens sectional detector. The electron source will provide an electron beam. The intermediate lenses focus the electron beam further. The objective lens is a combination of an immersion magnetic lens and a retarding electrostatic lens focuses the electron beam onto the specimen surface. The in-lens detector will be divided into two or more sections to collect secondary electrons emanating from the specimen with different azimuth and polar angle so that side-view SEM imagery can be obtained.

    摘要翻译: 提出了一种用于收集侧视图和平面视图SEM图像的电子束装置和方法。 电子束装置包括电子源,如果需要的话,一些中间透镜,物镜和透镜内部分检测器。 电子源将提供电子束。 中间透镜进一步聚焦电子束。 物镜是浸没式磁透镜和阻滞静电透镜的组合,将电子束聚焦在样品表面上。 镜片内检测器将被分为两个或多个部分,以收集具有不同方位角和极角的样品发出的二次电子,从而可以获得侧视SEM图像。