摘要:
A method of cleaning an inside of a processing chamber is provided according to an embodiment of the present disclosure. The method includes supplying a fluorine-based gas and a nitrogen oxide-based gas as the cleaning gas, into the processing chamber heated to a first temperature, and removing a deposit by a thermochemical reaction. The method further includes changing a temperature in the processing chamber to a second temperature higher than the first temperature, and supplying the fluorine-based gas and the nitrogen oxide-based gas as the cleaning gas, and removing extraneous materials, remaining on the surface of the member in the processing chamber, by a thermochemical reaction.
摘要:
To realize a high productivity while maintaining excellent film deposition characteristics on a substrate even if a plurality of processing gases of different gas species are used. There are provided the step of loading a plurality of substrates into a processing chamber; supplying a first processing gas to an upper stream side of a gas flow outside of a region where a plurality of substrates loaded into a processing chamber are arranged, supplying a second processing gas to the upper stream side of the gas flow outside of the region where the plurality of substrates loaded into the processing chamber are arranged, supplying the first processing gas to a middle part of the gas flow in the region where the plurality of substrates loaded into the processing chamber are arranged, and causing the first processing gas and the second processing gas to react with each other in the processing chamber, to form an amorphous material and form a thin film on main surfaces of the plurality of substrates; and the step of unloading the substrate after forming the thin film from the processing camber.
摘要:
The present invention suppresses metallic contamination in a processing chamber and a breakage of a quartz member, while suppressing decrease in film formation rate in a thin film formation process immediately after dry cleaning of the inside of the processing chamber, and enhances the operation rate of a apparatus. The method according to the invention includes the steps of: removing the thin film on the inside of the processing chamber by supplying a fluorine gas solely or a fluorine gas diluted by an inert gas solely, as the cleaning gas, to the inside of the processing chamber heated to a first temperature; and removing an adhered material remaining on the inside of the processing chamber after removing the thin film by supplying a fluorine gas solely or a fluorine gas diluted by an inert gas solely, as the cleaning gas, to the inside of the processing chamber heated to a second temperature.
摘要:
The present invention provides an oxide phosphor for use in an electroluminescent device, which phosphor is capable of providing a high-luminance EL device while the composition thereof is controlled to be as simple as possible, and which phosphor attains multi-color and full-color light emissions without the need for treatment at a high temperature greatly in excess of 1,000° C. The invention also provides an electroluminescent device employing the phosphor. The oxide phosphor for use in an electroluminescent device is formed from an yttrium (Y) oxide as a matrix and at least one transition metal element as an activator, or from a Y—Ge—O oxide or a Y—Ge—Si—O oxide as a matrix and at least one metallic element, as a luminescence center, selected from among transition metal elements and rare earth metal elements.
摘要:
A method of cleaning an inside of a processing chamber is provided according to an embodiment of the present disclosure. The method includes supplying a fluorine-based gas and a nitrogen oxide-based gas as the cleaning gas, into the processing chamber heated to a first temperature, and removing a deposit by a thermochemical reaction. The method further includes changing a temperature in the processing chamber to a second temperature higher than the first temperature, and supplying the fluorine-based gas and the nitrogen oxide-based gas as the cleaning gas, and removing extraneous materials, remaining on the surface of the member in the processing chamber, by a thermochemical reaction.
摘要:
The method according to the invention includes the steps of: purging an inside of the processing chamber with gas while applying a thermal impact onto the thin film deposited on the inside of the processing chamber by decreasing the temperature in the processing chamber, so as to forcibly generate a crack in the thin film and forcibly peel the adhered material with a weak adhesive force, in a state where the substrate is not present in the processing chamber; removing the thin film deposited on the inside of the processing chamber by supplying a fluorine-based gas to the inside of the processing chamber heated to a first temperature, in the state where the substrate is not present in the processing chamber; and removing an adhered material remaining on the inside of the processing chamber after removing the thin film by supplying a fluorine-based gas to the inside of the processing chamber heated to a second temperature, in the state where the substrate is not present in the processing chamber.
摘要:
The method according to the invention includes the steps of: purging an inside of the processing chamber with gas while applying a thermal impact onto the thin film deposited on the inside of the processing chamber by decreasing the temperature in the processing chamber, so as to forcibly generate a crack in the thin film and forcibly peel the adhered material with a weak adhesive force, in a state where the substrate is not present in the processing chamber; removing the thin film deposited on the inside of the processing chamber by supplying a fluorine-based gas to the inside of the processing chamber heated to a first temperature, in the state where the substrate is not present in the processing chamber; and removing an adhered material remaining on the inside of the processing chamber after removing the thin film by supplying a fluorine-based gas to the inside of the processing chamber heated to a second temperature, in the state where the substrate is not present in the processing chamber.
摘要:
To realize a high productivity while maintaining excellent film deposition characteristics on a substrate even if a plurality of processing gases of different gas species are used. There are provided the step of loading a plurality of substrates into a processing chamber; supplying a first processing gas to an upper stream side of a gas flow outside of a region where a plurality of substrates loaded into a processing chamber are arranged, supplying a second processing gas to the upper stream side of the gas flow outside of the region where the plurality of substrates loaded into the processing chamber are arranged, supplying the first processing gas to a middle part of the gas flow in the region where the plurality of substrates loaded into the processing chamber are arranged, and causing the first processing gas and the second processing gas to react with each other in the processing chamber, to form an amorphous material and form a thin film on main surfaces of the plurality of substrates; and the step of unloading the substrate after forming the thin film from the processing camber.
摘要:
The present invention provides a fluoride single-crystal material for use in a thermoluminescence dosimeter, which material exhibits a thermoluminescence efficiency higher than that of conventional similar materials, and a thermoluminescence dosimeter employing the material. The fluoride single-crystal material for use in a thermoluminescence dosimeter contains a compound represented by LiXAlF6, wherein X is selected from the group consisting of Ca, Sr, Mg, and Ba, and, serving as a dopant, at least one species selected from among Ce, Na, Eu, Nd, Pr, Tm, Tb, and Er.
摘要:
The invention provides a thermoelectric conversion material which is low toxic and can be used at a high temperature of 500° C. or higher without variation in performance, and a thermoelectric conversion device containing the material. The thermoelectric conversion material is formed of an oxide represented by (Ca3-xMx)Co4O9 (M: Sr or Ba, 1.2>x>0.5).
摘要翻译:本发明提供一种低毒性并且可以在500℃以上的高温下使用而没有性能变化的热电转换材料和含有该材料的热电转换装置。 热电转换材料由(Ca 3-x M x)Co 4 O 9(M:Sr或Ba,1.2> x> 0.5)表示的氧化物形成。