Abstract:
A nonvolatile semiconductor memory device includes a memory cell array having a plurality of banks and a cache block corresponding to each of the plurality of banks. The cache block has a predetermined data storage capacity. A page buffer is included which corresponds to each of the plurality of banks. A programming circuit programs all of the plurality of banks except a last of said banks with page data. The page data is loaded through each page buffer and programmed into each cache block such that when page data for the last bank is loaded into the page buffer, the loaded page data and the page data programmed into the respective cache blocks are programmed into respective corresponding banks.
Abstract:
A method of programming a flash memory includes programming memory cells connected to a selected word line by applying a first voltage to the selected word line and a second voltage to non-selected word lines, the second voltage being lower than the first voltage, lowering the first voltage of the selected word line to a third voltage after programming the memory cells connected to the selected word line, the third voltage being lower than the first voltage, and recovering a fourth voltage of the selected word line and the non-selected word lines, the fourth voltage being lower than the second and third voltages.
Abstract:
A flash memory and a program method of the flash memory include applying a pass voltage to word lines to boost a channel voltage, which is discharged to a ground voltage. A program voltage is applied to a selected word line and a local voltage is applied to at least one word line supplied with the pass voltage while the program voltage is being applied to the selected word line. The local voltage is lower than the pass voltage and equal to or higher than the ground voltage. The boosted channel voltage may be discharged before the program voltage is applied to the selected word line.
Abstract:
A flash memory device includes multiple memory blocks, a decoder configured to select at least one of the memory blocks in response to block select signals, a controller configured to generate the block select signals in response to a block address and to generate a flag signal when the block address corresponds to a bad block, and an output buffer configured to output fixed data in response to the flag signal indicating that the block address corresponds to the bad block. When the block address corresponds to a bad block, the controller generates the block select signals to cause the decoder to interrupt selection of a memory block corresponding to the block address.
Abstract:
Methods of generating a program voltage for programming a non-volatile memory device include generating an initial voltage and generating a first ramping voltage in response to the initial voltage. The first ramping voltage has a ramping speed slower than the ramping speed of the initial voltage. A second ramping voltage is generated in response to the first ramping voltage. The second ramping voltage has a lower ripple than the first ramping voltage. The second ramping voltage is output as a program voltage for programming a non-volatile memory device. A program voltage generating circuit includes a program voltage generating unit configured to generate an initial voltage, a ramping circuit configured to generate a first ramping voltage responsive to the initial voltage, and a voltage controlling unit configured to generate a second ramping voltage having relatively low ripple and to output the first ramping voltage or the second ramping voltage responsive to a voltage level of the first ramping voltage. Semiconductor memory devices including program voltage generating circuits are also disclosed.
Abstract:
A method of reading a flash memory device can include driving a selected word line by applying a selection voltage thereto and driving unselected word lines by applying a first voltage thereto, driving the unselected word lines and first and second selection lines by applying a second voltage that is higher than the first voltage thereto, and reading data from a memory cell that is coupled to the selected word line.
Abstract:
Methods of generating a program voltage for programming a non-volatile memory device include generating an initial voltage and generating a first ramping voltage in response to the initial voltage. The first ramping voltage has a ramping speed slower than the ramping speed of the initial voltage. A second ramping voltage is generated in response to the first ramping voltage. The second ramping voltage has a lower ripple than the first ramping voltage. The second ramping voltage is output as a program voltage for programming a non-volatile memory device. A program voltage generating circuit includes a program voltage generating unit configured to generate an initial voltage, a ramping circuit configured to generate a first ramping voltage responsive to the initial voltage, and a voltage controlling unit configured to generate a second ramping voltage having relatively low ripple and to output the first ramping voltage or the second ramping voltage responsive to a voltage level of the first ramping voltage. Semiconductor memory devices including program voltage generating circuits are also disclosed.
Abstract:
Methods of generating a program voltage for programming a non-volatile memory device include generating an initial voltage and generating a first ramping voltage in response to the initial voltage. The first ramping voltage has a ramping speed slower than the ramping speed of the initial voltage. A second ramping voltage is generated in response to the first ramping voltage. The second ramping voltage has a lower ripple than the first ramping voltage. The second ramping voltage is output as a program voltage for programming a non-volatile memory device. A program voltage generating circuit includes a program voltage generating unit configured to generate an initial voltage, a ramping circuit configured to generate a first ramping voltage responsive to the initial voltage, and a voltage controlling unit configured to generate a second ramping voltage having relatively low ripple and to output the first ramping voltage or the second ramping voltage responsive to a voltage level of the first ramping voltage. Semiconductor memory devices including program voltage generating circuits are also disclosed.
Abstract:
A NAND flash memory device and a programming method thereof capable of improving a program speed during a multi-level cell programming operation are provided. The device performs a programming operation using an ISPP method. Additionally, the device includes a memory cell storing multi-bit data; a program voltage generating circuit generating a program voltage to be supplied to the memory cell; and a program voltage controller controlling a start level of the program voltage. The device supplies an LSB start voltage to a selected word line during an LSB program, and an MSB start voltage higher than the LSB start voltage to the selected word line during an MSB program.
Abstract:
According to one aspect, a memory cell array includes a bit line connected to a plurality of nonvolatile memory cells, where the nonvolatile memory cells are selectively programmable in any one of at least first, second, third and fourth threshold voltage states, and where the first, second, third and fourth threshold voltage states correspond to four different data values defined by first and second bits. A page buffer circuit stores a logic value as main latch data and is responsive to a main latch signal to selectively flip the logic value of the main latch data according to a voltage level of the bit line. A sub-latch circuit stores a logic value as sub-latch data and is responsive to a sub-latch signal to selectively flip the logic value of the sub-latch data according to the voltage level of the bit line. The memory device is operable in a read mode which reads the threshold voltage state of the non-volatile memory cells and a programming mode which programs the threshold voltage state of the non-volatile memory cells, wherein the page buffer circuit is selectively responsive to the sub-latch data to inhibit flipping of the logic value of the main latch data in the programming mode.