摘要:
A thin film transistor includes a gate electrode, a first insulating layer on the gate electrode, a semiconductor layer on the gate electrode and separated from the gate electrode by the first insulating layer, the semiconductor layer including a channel region corresponding to the gate electrode, a source region, and a drain region, a hydrogen diffusion barrier layer on the semiconductor layer, the hydrogen diffusion barrier layer covering the channel region and exposing the source and drain regions, and a second insulation layer on the source and drain regions and on the hydrogen diffusion barrier layer, such that the hydrogen diffusion barrier layer is between the second insulation layer and the channel region.
摘要:
A thin film transistor (TFT) and a method of manufacturing the same such that an ohmic contact can be formed between a semiconductor layer and a source electrode or between the semiconductor layer and a drain electrode, wherein the TFT can be applied to a plastic substrate. The TFT includes: a substrate; an active layer formed of ZnO, InZnO, ZnSnO, and/or ZnInGaO on the substrate and including a channel region, a source region, and a drain region; a gate electrode insulated from the active layer; and source and drain electrodes insulated from the gate electrode and electrically connected to the source region and the drain region, respectively, wherein the source region and the drain region of the active layer include hydrogen.
摘要:
An oxide semiconductor thin film transistor and a flat panel display device incorporating the same oxide semiconductor thin film transistor. The thin film transistor includes a gate electrode formed on the substrate, a gate insulating layer formed on the substrate and covering the gate electrode, an oxide semiconductor layer formed on the gate insulating layer and covering the gate electrode, a titanium layer formed in a source region and a drain region of the oxide semiconductor layer, and source and drain electrodes respectively coupled to the source region and the drain region through the titanium layer and made of copper. The titanium layer reduces the contact resistance between the source and drain electrodes made of copper and the oxide semiconductor layer, forms a stable interface junction therebetween, and blocks a diffusion of copper.
摘要:
Disclosed is a thin film transistor which has an oxide semiconductor as an activation layer, a method of manufacturing the same and a flat panel display device having the same. The thin film transistor includes an oxide semiconductor layer formed on a substrate and including a channel region, a source region and a drain region, a gate electrode insulated from the oxide semiconductor layer by a gate insulating film, and source electrode and drain electrode which are coupled to the source region and the drain region, respectively. The oxide semiconductor layer includes a first layer portion and a second layer portion. The first layer portion has a first thickness and a first carrier concentration, and the second layer portion has a second thickness and a second carrier concentration. The second carrier concentration is lower than the first carrier concentration.
摘要:
Disclosed is an organic light emitting display device and a method of manufacturing the same. The organic light emitting display device includes the thin film transistor of the drive unit that has the activation layer formed in a structure where the first oxide semiconductor layer and the second oxide semiconductor layer are stacked, the thin film transistor of the pixel unit that has the activation layer formed of the second oxide semiconductor layer, and the organic light emitting diode coupled to the thin film transistor of the pixel unit. The thin film transistor of the drive unit has channel formed on the first oxide semiconductor layer having a higher carrier concentration than the second oxide semiconductor layer, having a high charge mobility, and the thin film transistor of the pixel unit has a channel formed on the second oxide semiconductor layer, having a stable and uniform functional property.
摘要:
A flexible substrate for a TFT includes a metal substrate having a predetermined coefficient of thermal expansion, and a buffer layer on the metal substrate, the buffer layer including a silicon oxide or a silicon nitride, wherein the predetermined coefficient of thermal expansion of the metal substrate satisfies an equation as follows, α f + 0.162 × ( 1 - v f ) E f ≤ α s ≤ α f + 0.889 × ( 1 - v f ) E f Ef representing Young's modulus of the buffer layer, vf representing Poisson's ratio of the buffer layer, αf representing a coefficient of thermal expansion of the buffer layer, and αs representing the predetermined coefficient of thermal expansion of the metal substrate.
摘要翻译:用于TFT的柔性基板包括具有预定热膨胀系数的金属基板和金属基板上的缓冲层,缓冲层包括氧化硅或氮化硅,其中金属基板的预定热膨胀系数 满足以下等式:αf + 0.162×(1-vf)E f≤αs≤αf + 0.889×(1-vf)E f Ef表示缓冲层的杨氏模量,vf表示缓冲器的泊松比 层,表示缓冲层的热膨胀系数的αf,表示金属基板的规定的热膨胀系数的αs。
摘要:
A pixel circuit of a flat panel display device and a method for driving thereof are provided. The pixel circuit includes a first transistor having a first gate electrode coupled to a scan line, a second electrode coupled to a data line, a second gate electrode coupled to a controlling signal line, and a first electrode, a second transistor having a first gate electrode coupled to the first electrode of the first transistor, a second electrode coupled to a first voltage source, a second gate electrode coupled to the controlling signal line, and a first electrode, a capacitor coupled between the first gate electrode of the second transistor and the first electrode of the second transistor, and an organic light emitting diode coupled between the first electrode of the second transistor and a second voltage source, in which the threshold voltage of the first and second transistors may be controlled to the required level by supplying a controlling signal of a fixed voltage level to the second gate electrodes of the first and second transistors through the controlling signal line.
摘要:
A thin film transistor (TFT) using an oxide semiconductor as an active layer, a method of manufacturing the TFT, and a flat panel display device having the TFT include source and drain electrodes formed on a substrate; an active layer formed of an oxide semiconductor disposed on the source and drain electrodes; a gate electrode; and an interfacial stability layer formed on at least one of top and bottom surfaces of the active layer. In the TFT, the interfacial stability layer is formed of an oxide having a band gap of 3.0 to 8.0 eV. Since the interfacial stability layer has the same characteristics as a gate insulating layer and a passivation layer, chemically high interface stability is maintained. Since the interfacial stability layer has a band gap equal to or greater than that of the active layer, charge trapping is physically prevented.
摘要:
There is provided a thin film transistor exhibiting stable reliability and electrical characteristics by forming an active layer by adding material having a large difference of electronegativity from oxygen like Hf and an atomic radius similar to that of Zn or SN to an oxide semiconductor made of ZnSnO to adjust concentration of carrier and to enhance reliability of the oxide semiconductor, and an organic light emitting display device having the same.
摘要:
An organic light-emitting display device, which may be configured to prevent moisture or oxygen from penetrating the organic light-emitting display device from the outside is disclosed. An organic light-emitting display device, which is easily applied to a large display device and/or may be easily mass produced is further disclosed. Additionally disclosed is a method of manufacturing an organic light-emitting display device. An organic light-emitting display device may include, for example, a thin-film transistor (TFT) including a gate electrode, an active layer insulated from the gate electrode, source and drain electrodes insulated from the gate electrode and contacting the active layer and an insulating layer disposed between the source and drain electrodes and the active layer; and an organic light-emitting diode electrically connected to the TFT. The insulating layer may include, for example, a first insulating layer contacting the active layer; and a second insulating layer formed of a metal oxide and disposed on the first insulating layer.