Abstract:
Processes for the production of chlorinated alkanes are provided. The present processes comprise reacting one or more mono- and/or dichloroalkanes to form tri-, tetra- and/or pentachloroalkanes, with high regioselectivity. In those embodiments wherein a dichloroalkane is desirably utilized, it may advantageously be a vicinal dichloroalkane. Further, only one catalyst is utilized. The present processes make use of sulfuryl chloride as a chlorinating agent, rather than a gaseous chlorinating agent such as chlorine gas. Finally, the process uses lower intensity process conditions than at least some conventional processes, and thus, operating costs are saved.
Abstract:
Processes for the production of chlorinated propenes are provided. The present processes make use of 1,2-dichloropropane, a by-product in the production of chlorohydrin, as a low cost starting material, alone or in combination with 1,2,3-trichloropropane. The present processes can also generate anhydrous HCl as a byproduct that can be removed from the process and used as a feedstock for other processes, providing further time and cost savings. Finally, the processes are advantageously conducted in the liquid phase, thereby presenting additional savings as compared to conventional, gas phase processes.
Abstract:
A process for producing a chlorohydrin, an ester of a chlorohydrin, or a mixture thereof including the steps of contacting, in a hydrochlorination reactor, a multihydroxylated aliphatic hydrocarbon, an ester of a multihydroxylated aliphatic hydrocarbon, or a mixture thereof with a source of a hydrogen chloride, in the presence of a hydrophobic or extractable carboxylic acid catalyst is provided.
Abstract:
The present invention provides adiabatic plug flow reactors suitable for the production of chlorinated and/or fluorinated propene and higher alkenes from the reaction of chlorinated and/or fluorinated alkanes and chlorinated and/or fluorinated alkenes. The reactors comprise one or more designs that minimize the production of by-products at a desired conversion.
Abstract:
Extruded polymer foams are prepared using 5,5-bis(bromomethyl)-2-oxo-1,3,2-dioxaphosphorinane or brominated 2-oxo-1,3,2-dioxaphosphorinane compounds. The brominated FR additives unexpectedly are stable at the extrusion temperatures, and provide excellent flame retardancy to the foams.
Abstract:
Compositions comprising: A) an aluminum compound corresponding to the formula AlArf3, where Arf is a fluorinated aromatic hydrocarbyl moiety of from 6 to 30 carbon atoms; B) an aluminum compound corresponding to the formula: AlArfQ1Q2, or a dimer, adduct, or mixture thereof; where: Arf is as previously defined; Q1 is Arf or a C1-20 hydrocarbyl group, optionally substituted with one or more cyclohydrocarbyl, hydrocarbyloxy, hydrocarbylsiloxy, hydrocarbylsilylamino, hydrocarbylsilyl, silylhydrocarbyl, di(hydrocarbylsilyl)amino, hydrocarbylamino, di(hydrocarbyl)amino, di(hydrocarbyl)phosphino, or hydrocarbylsulfido groups having from 1 to 20 atoms other than hydrogen, or, further optionally, such substituents may be covalently linked with each other to form one or more fused rings or ring systems; and Q2 is an aryloxy, arylsulfide or di(hydrocarbyl)amido group, optionally substituted with one or more hydrocarbyl, cyclohydrocarbyl, hydrocarbyloxy, hydrocarbylsiloxy, hydrocarbylsilylamino, hydrocarbylsilyl, silylhydrocarbyl, di(hydrocarbylsilyl)amino, hydrocarbylamino, di(hydrocarbyl)amino, di(hydrocarbyl)phosphino, or hydrocarbylsulfido groups having from 1 to 20 atoms other than hydrogen, or, further optionally such substituents may be covalently linked with each other to form one or more fused rings or ring systems, said Q2 having from 3 to 20 atoms other than hydrogen; and the molar ratio of A):B) in the composition being from 0.1:1 to 10:1 are useful as activators for olefin polymerizations.
Abstract:
Compounds corresponding to the formula: AlArfQ1Q2, or a dimer, adduct, or mixture thereof and further mixtures with aluminum compounds of the formula AlArf3, where: Arf is a fluorinated aromatic hydrocarbyl moiety of from 6 to 30 carbon atoms; Q1 is Af or a C1-20 hydrocarbyl group, optionally substituted with one or more cyclohydrocarbyl, hydrocarbyloxy, hydrocarbylsiloxy, hydrocarbylsilylamino, hydrocarbylsilyl, silylhydrocarbyl, di(hydrocarbylsilyl)amino, hydrocarbylamino, di(hydrocarbyl)amino, di(hydrocarbyl)phosphino, or hydrocarbylsulfido groups having from 1 to 20 atoms other than hydrogen, or, further optionally, such substituents may be covalently linked with each other to form one or more fused rings or ring systems; and Q2 is an aryloxy, arylsulfide or di(hydrocarbyl)amido group, optionally substituted with one or more hydrocarbyl, cyclohydrocarbyl, hydrocarbyloxy, hydrocarbylsiloxy, hydrocarbylsilylamino, hydrocarbylsilyl, silylhydrocarbyl, di(hydrocarbylsilyl)amino, hydrocarbylamino, di(hydrocarbyl)amino, di(hydrocarbyl)phosphino, or hydrocarbylsulfido groups having from 1 to 20 atoms other than hydrogen, or, further optionally such substituents may be covalently linked with each other to form one or more fused rings or ring systems, said Q2 having from 3 to 20 atoms other than hydrogen are useful as activators for olefin polymerizations.
Abstract:
The monoether adduct of a tri(fluoroaryl)aluminum compound is prepared by an exchange reaction between a trihydrocarbylaluminum compound and a tri(fluororaryl)borane compound in a hydrocarbon solvent in the presence of a C.sub.1-6 aliphatic ether in an amount from 0.9 to 1.0 moles per mole of aluminum.
Abstract:
A group of functionalized polyamine chelants that form complexes with rhodium are disclosed. The rhodium complexes can be attached to an antibody or antibody fragment and used for therapeutic or diagnostic purposes.
Abstract:
A group of functionalized macrocyclic polyaminocarboxylate chelants that form complexes with rare earth-type metal ions are disclosed. The complexes, covalently attached to an antibody or antibody fragment, can be used for therapeutic and/or diagnostic purposes for cancer.