摘要:
An IC inductor structure is provided which includes a first inductor element formed on a semiconductor substrate and at least a second inductor element formed on the semiconductor substrate proximate the first inductor element. The first inductor element has a first effective magnetic field direction associated therewith, and the second inductor element has a second effective magnetic field direction associated therewith. The first and second inductor elements are oriented relative to one another so as to create a non-zero angle between the first and second effective magnetic field directions.
摘要:
A clock generator is provided for a transmitter in a transceiver adapted to communicate data over a serial data link. The transceiver includes a clock data recovery circuit recovers a receive clock signal and outputs a reference clock signal. The clock generator includes a local clock, a frequency difference detector, and a fractional-N frequency synthesizer. The local clock outputs a local clock signal. The frequency difference detector outputs a fractional frequency difference signal based on a frequency difference between the local clock signal and the reference clock signal. The fractional-N frequency synthesizer outputs a transmit clock signal having a same frequency as the recovered receive clock signal.
摘要:
Various embodiments of the present invention provide systems and circuits for clock signal generation. For example, various embodiments of the present invention provide semiconductor devices that include a power source and a phase lock loop circuit. The power source provides a supply voltage to the phase lock loop circuit. The phase lock loop circuit includes and on-chip control voltage source and a voltage controlled oscillator. The on-chip control voltage source is capable of producing a control voltage that varies between a minimum voltage and a maximum voltage. The voltage controlled oscillator receives the control voltage and provides a clock signal with a frequency corresponding to the control voltage. The maximum voltage is greater than the supply voltage. For example, in some embodiments of the present invention, the maximum voltage is more than double the supply voltage. As another example, in some embodiments of the present invention, the maximum voltage is more than six times the supply voltage.
摘要:
Various apparatus and methods for related to clock recovery are disclosed. For example, in one illustrative embodiment, a clock recovery circuit includes a coding circuit adapted to translate a stream of first digital numbers derived from a source signal into a stream of first binary numbers and a stream of second binary numbers, a digital-to-analog converter (DAC) circuit coupled to the coding circuit and configured to provide an analog output based on the streams of first and second binary numbers and a voltage-controlled oscillator (VCO) controlled by the analog output of the DAC circuit and adapted to produce a base clock having a base clock frequency.
摘要:
A comparator circuit includes a reference generator connecting to a first source providing a first voltage. The reference generator is operative to generate a reference signal and includes a control circuit selectively operable in at least a first mode or a second mode in response to a first control signal, wherein in the first mode the reference signal is not generated, and in the second mode the reference generator is operative to generate the reference signal. The comparator circuit further includes a comparator connecting to a second source providing a second voltage, the second voltage being less than the first voltage. The comparator is operative to receive the reference signal and an input signal, and to generate an output signal which is a function of a comparison between the input signal and the reference signal. A hysteresis circuit is included in the comparator circuit for selectively controlling a switching threshold of the comparator, relative to the input signal, as a function of the output signal of the comparator. The comparator circuit includes a voltage clamp operative to limit a voltage applied to one or more devices in the control circuit, the comparator, and/or the hysteresis circuit to less than the second voltage.
摘要:
A phase-locked loop (PLL) has a phase detector (PD), a charge pump, a loop filter, and a voltage-controlled oscillator (VCO). The PD generates DOWN pulses based on differences in phase between an input signal and a feedback signal. The charge pump has an UP current source that generates a DC UP current and a DOWN current source that generates a DOWN current based on the DOWN pulses received from the phase detector. The charge pump generates a charge-pump current based on the DC UP current and the DOWN current. The loop filter receives the charge-pump current and generates a loop-filter voltage based on a net accumulation of charge from the charge-pump current. The VCO receives the loop-filter voltage and generates an output signal whose frequency is based on the loop-filter voltage, wherein the feedback signal is generated from the output signal. By using a DC UP current source, the PLLs of the present invention are able to operate at higher frequencies than conventional charge-pump PLLs, since the UP current source in the charge pump of a conventional PLL responds less quickly to PD pulses than does a conventional DOWN current source, due to mobility differences between holes and electrons, e.g., in conventional CMOS circuitry.
摘要:
Methods and apparatus are provided for a clock phase generator for CDR data sampling that generates early and/or late sampling clocks, relative to ideal transition and sample points. An early sampling clock is generated by generating a plurality of transition and data sampling clock signals having a substantially uniform phase separation; and delaying at least one of the transition clock signals to generate one or more early clock signals. A late sampling clock is generated by generating a plurality of transition and data sampling clock signals having a substantially uniform phase separation; and delaying at least one of the data sampling clock signals to generate one or more late clock signals. The early clock signals can be employed, for example, in a threshold-based decision feedback equalizer. The late clock signals can be employed, for example, in a classical decision feedback equalizer.
摘要:
A circuit for spread spectrum rate control uses a first interpolator to phase interpolate between a first signal and a second signal and generate a first output signal based on a first control signal. A second interpolator is utilized to phase interpolate between a third signal and a fourth signal and generate a second output signal based on a second control signal. A multiplexer is used to select, based on a select signal, the first output signal or the second output signal as a spread spectrum clock (SSCLK). A leap-frog interpolator control is used to generate, in synchronism with the SSCLK, the first control signal based on a first type of phase adjustment request, the second control signal based on a second type of phase adjustment request, and the select signal to switch the multiplexer between the first output signal and the second output signal after allowing for an interpolator settling time when changing the first control signal or the second control signal.
摘要:
Various apparatus and methods for related to clock recovery are disclosed. For example, in one illustrative embodiment, a clock recovery circuit includes a coding circuit adapted to translate a stream of first digital numbers derived from a source signal into a stream of first binary numbers and a stream of second binary numbers, a digital-to-analog converter (DAC) circuit coupled to the coding circuit and configured to provide an analog output based on the streams of first and second binary numbers and a voltage-controlled oscillator (VCO) controlled by the analog output of the DAC circuit and adapted to produce a base clock having a base clock frequency.