Abstract:
A coil component 100 is provided with a substrate 11, a thin-film coil layer 12 provided on the substrate 11, first and second bump electrodes 13a, 13b provided on a surface of the thin-film coil layer 12, a first lead conductor 20 provided on the surface of the thin-film coil layer 12 together with the first and second bump electrodes 13a, 13b and formed integrally with the first bump electrode 13a, and an insulator layer 14 provided between the first bump electrode 13a and the second bump electrode 13b. The thin-film coil layer 12 contains a first spiral conductor 16 which is a plane coil pattern. The first bump electrode 13a is connected to an internal peripheral end of the first spiral conductor 16 via the first lead conductor 20. The second bump electrode 13b is connected to an external peripheral end of the first spiral conductor 16.
Abstract:
A vehicle control device for controlling a vehicle drive apparatus, the vehicle control device configured with a phase determining mechanism that determines the end of the torque phase in a shift operation, and a rotary electrical machine control mechanism that controls the torque of the rotary electrical machine using a variation of input torque. The vehicle control device is also configured with an engagement control mechanism that provides feedback controlling supplied oil pressure to an engagement side element as an engagement element on a side to be engaged after switching of shift speeds so that the rotation speed change rate of the input member becomes the target rotation speed change rate.
Abstract:
A novel D-serine quantification method that can overcome various disadvantages of a conventional D-serine quantification method; a novel enzyme that can be used in the D-serine quantification method; a gene encoding the enzyme; and the like. Specifically, a novel D-serine dehydratase including (a) a protein having an amino acid sequence set forth in SEQ ID NO: 1 or (b) a protein having an amino acid sequence homologous to the amino acid sequence set forth in SEQ ID NO: 1 and having a D-serine dehydratase activity; and a D-serine quantification method including the steps of reacting a sample with the enzyme, quantifying ammonia or pyruvic acid produced by the reaction, and calculating the amount of D-serine in the sample based on a value produced by the quantification.
Abstract translation:一种可以克服常规D-丝氨酸定量方法的各种缺点的新型D-丝氨酸定量方法; 可用于D-丝氨酸定量方法的新型酶; 编码酶的基因; 等等。 具体而言,是一种新型的D-丝氨酸脱水酶,其包含(a)具有SEQ ID NO:1所示的氨基酸序列的蛋白质或(b)具有与SEQ ID NO:1所示的氨基酸序列同源的氨基酸序列的蛋白质 1,具有D-丝氨酸脱水酶活性; 和D-丝氨酸定量方法,其包括使样品与酶反应,定量由反应产生的氨或丙酮酸,并根据定量产生的值计算样品中D-丝氨酸的量。
Abstract:
A vehicle control device for controlling a vehicle drive apparatus, the vehicle control device configured with a release control mechanism that provides feedback controlling supplied oil pressure to a release side element, and an engagement control mechanism that increases supplied oil pressure to an engagement side element as an engagement element on a side to be engaged in a state that the differential rotation speed is substantially constant. The control device is further configured with a phase determining mechanism that determines if the torque phase has started when a condition that a phenomenon accompanying a change of the differential rotation speed due to increase of the supplied oil pressure to the engagement side element is detected is met.
Abstract:
The present invention is provided with a composite electronic device comprising an inductor element and an ESD protection element formed between two magnetic substrates, wherein the inductor element includes insulation layers made of a resin, and spiral conductors formed on the insulation layers, the ESD protection element includes a base insulation layer, a pair of gap electrodes arranged via gap formed therebetween on the base insulation layer, and an ESD absorbing layer arranged at least between the gap electrodes, and the ESD absorbing layer includes a composite material having an insulation inorganic material and a conductive inorganic material discontinuously dispersed in a matrix of the insulation inorganic material. The gap of the ESD protection element is provided at exterior of the spiral conductor so as not to be overlapped with the spiral conductor in view of a laminating direction.
Abstract:
An electronic component is provided with a substrate, a thin-film element layer provided on the substrate, first and second bump electrodes, provided on a surface of the thin-film element layer, and an insulator layer provided between the first bump electrode and the second bump electrode. The thin-film element layer contains a first spiral conductor which is a plane coil pattern. The first bump electrode is connected to an internal peripheral end of the first spiral conductor. The second bump electrode is connected to an external peripheral end of the first spiral conductor. Both of the first and second bump electrodes, have a first exposure surface exposed to a principal surface of the insulator layer and a second exposure surface exposed to an end face of the insulator layer.
Abstract:
A resin layer formation method, resin layer formation device, disk and disk manufacturing method for making a resin layer uniform on a substrate before lamination or on a substrate to be coated by a simple procedure are provided. Adhesive A is coated at the inner circumference side while rotating a substrate P at low speed, a first adhesive layer AL1 is formed on the surface of the substrate P by rotating the substrate P at high speed, a step difference section H is formed around a rotation center of the substrate P by irradiating ultraviolet on an area in the inner circumference side of the first adhesive layer AL1 and hardening the area, the adhesive A is coated at the rotation center side from the step difference section H on the substrate P, and a second adhesive layer AL2 is formed on the first adhesive layer AL1 by rotating the substrate P at high speed. The first adhesive layer AL1 and the second adhesive layer AL2 are integrated to form a uniform adhesive layer B as a whole.
Abstract:
A composite structure forming method comprises the steps of first pre-treating brittle material fine particles to impart an internal strain to the brittle material fine particles, secondly causing the brittle material fine particles in which the internal strain has been created to collide with a substrate surface at high speed or applying a mechanical impact force to the brittle material fine particles containing the internal strain therein provided on the substrate surface, to deform or fracture the brittle material fine particles, re-joining the fine particles through active new surfaces generated by the deformation or fracture, forming an anchor section made of polycrystalline brittle material of which part bites into the substrate surface at a boundary section between the new surfaces and the substrate, and further forming a structure made of polycrystalline brittle material on the anchor section.
Abstract:
A vehicle control device for controlling a vehicle drive apparatus, the vehicle control device configured with a phase determining mechanism that determines the end of the torque phase in a shift operation, and a rotary electrical machine control mechanism that controls the torque of the rotary electrical machine using a variation of input torque. The vehicle control device is also configured with an engagement control mechanism that provides feedback controlling supplied oil pressure to an engagement side element as an engagement element on a side to be engaged after switching of shift speeds so that the rotation speed change rate of the input member becomes the target rotation speed change rate.
Abstract:
A semi conductor integrated circuit includes a first via-contact configured to connect a first interconnection pattern provided for a first interconnection layer and a second interconnection pattern provided for a second interconnection layer, and a second via-contact configured to connect a third interconnection pattern provided for the first interconnection layer and the second interconnection pattern. A redundant interconnection pattern is formed in the first interconnection layer and configured to connect the first interconnection pattern and the third interconnection pattern to overlap above the second interconnection pattern.