摘要:
An epitaxial substrate for an electronic device, in which a lateral direction of the substrate is defined as a main current conducting direction and a warp configuration of the epitaxial substrate is adequately controlled, as well as a method of producing the epitaxial substrate. Specifically, the epitaxial substrate for an electron device, including: a Si single crystal substrate; and a Group III nitride laminated body formed by epitaxially growing plural Group III nitride layers on the Si single crystal substrate, wherein a lateral direction of the epitaxial substrate is defined as a main current conducting direction, is characterized in that the Si single crystal substrate is a p-type substrate having a specific resistance value of not larger than 0.01 Ω·cm.
摘要:
An epitaxial substrate for electronic devices is provided, which can improve vertical breakdown voltage and provides a method of producing the same.The epitaxial substrate includes a conductive SiC single crystal substrate, a buffer as an insulating layer on the SiC single crystal substrate, and a main laminate formed by epitaxially growing a plurality of Group III nitride layers on the buffer. Further, the buffer includes at least an initial growth layer in contact with the SiC single crystal substrate and a superlattice laminate having a superlattice multi-layer structure on the initial growth layer. The initial growth layer is made of a Ba1Alb1Gac1Ind1N material. Furthermore, the superlattice laminate is configured by alternately stacking a first layer made of a Ba2Alb2Gac2Ind2N material and a second layer made of a Ba3Alb3Gac3Ind3N material having a different band gap from the first layer.
摘要:
Devices and techniques related to UV light-emitting devices that can be implemented in ways that improve the light-emitting efficiency of an UV light-emitting device using a group III nitride semiconductor.
摘要:
A heating process is performed in a nitrogen atmosphere at a temperature of not less than 1650° C. upon an epitaxial substrate including a single crystal base and an upper layer made of a group-III nitride crystal and epitaxially formed on a main surface of the single crystal base. The result shows that the heating process reduces the number of pits in a top surface to produce the effect of improving the surface flatness of the group-III nitride crystal. The result also shows that the dislocation density in the group-III nitride crystal is reduced to not more than one-half the dislocation density obtained before the heat treatment.
摘要:
An epitaxial substrate used to generate a group III nitride crystal having excellent crystal quality. An upper layer of a group III nitride is formed on a sapphire base with an off angle, and after that a heating process is performed at a temperature not lower than 1500° C., and thereby, the crystal quality of the upper layer is improved and repeating steps of which the size is greater than the height of several atomic layers are provided on the surface of the upper layer. The obtained epitaxial substrate is used as a base substrate for growing a group III nitride crystal layer. The group III nitride crystal grows in a manner of step flow, and therefore, threading dislocations from the upper layer are bent according to this growth, and are unevenly distributed as the crystal grows afterwards.
摘要:
Heat treatment is conducted at a predetermined temperature of not less than 1250° C. on an underlying substrate obtained by epitaxially forming a first group-III nitride crystal on a predetermined base as an underlying layer. Three-dimensional fine irregularities resulting from crystalline islands are created on the surface of the underlying layer. A second group-III nitride crystal is epitaxially formed on the underlying substrate as a crystal layer. There are a great many fine voids interposed at the interface between the crystal layer and underlying substrate. The presence of such voids suppresses propagation of dislocations from the underlying substrate, which reduces the dislocation density in the crystal layer. As a result, the crystal layer of good crystal quality can be obtained.
摘要:
A hydrogen chloride gas and an ammonia gas are introduced with a carrier gas into a reactor in which a substrate and at least an aluminum metallic material through conduits. Then, the hydrogen gas and the ammonia gas are heated by heaters, and thus, a III-V nitride film including at least Al element is epitaxially grown on the substrate by using a Hydride Vapor Phase Epitaxy method. The whole of the reactor is made of an aluminum nitride material which does not suffer from the corrosion of an aluminum chloride gas generated by the reaction of an aluminum metallic material with a hydrogen chloride gas.
摘要:
There is provided a method for preparing an AlGaN crystal layer having an excellent surface flatness. A buffer layer effective in stress relaxation is formed on a template substrate having a surface layer that is flat at a substantially atomic level and to which in-plane compressive stress is applied, and an AlGaN layer is formed on the buffer layer, so that an AlGaN layer can be formed that is flat at a substantially atomic level. Particularly when the surface layer of the template substrate includes a first AlN layer, a second AlN layer may be formed thereon at a temperature of 600° C. or lower, while a mixed gas of TMA and TMG is supplied in a TMG/TMA mixing ratio of 3/17 or more to 6/17 or less, so that a buffer layer effective in stress relaxation the can be formed in a preferred manner.
摘要:
Heat treatment is conducted at a predetermined temperature of not less than 1250° C. on an underlying substrate obtained by epitaxially forming a first group-III nitride crystal on a predetermined base as an underlying layer. Three-dimensional fine irregularities resulting from crystalline islands are created on the surface of the underlying layer. A second group-III nitride crystal is epitaxially formed on the underlying substrate as a crystal layer. There are a great many fine voids interposed at the interface between the crystal layer and underlying substrate. The presence of such voids suppresses propagation of dislocations from the underlying substrate, which reduces the dislocation density in the crystal layer. As a result, the crystal layer of good crystal quality can be obtained.
摘要:
A base material made of C-faced sapphire single crystal is set on a susceptor installed in a reactor arranged horizontally. Then, a trimethyl-aluminum and an ammonia are introduced as raw material gases into the reactor and supplied onto the substrate, to form an AlN film. In this case, the temperature of the base material is set to 1100° C. or over, and the ratio (V raw material gas/III raw material gas) is set to 800 or below, and the forming pressure is set within a range of 7-17 Torr. As a result, the crystallinity of the AlN film is developed to 90 arcsec or below in FWHM of X-ray rocking curve, and the surface flatness of the AlN film is developed to 20 Å or below. Therefore, a substrate composed of the base material and the AlN film is preferably usable for an acoustic surface wave device, and if the substrate is employed, the deviation from the theoretical propagation velocity is set to 1.5 m/sec or below.