Abstract:
The present invention relates to solid catalyst components comprising a reaction product of a titanium compound, a magnesium compound, an alcohol, an aluminum alkoxide, a siloxane mixture, and a maleate derivative; and catalyst systems comprising the solid catalyst components and organoaluminum compounds. The present invention also relates to methods of making the solid catalyst components and the catalyst systems, and methods of polymerizing or copolymerizing ethylene using the catalyst systems.
Abstract:
The present invention relates to a process for the production of catalysts, particularly of Ziegler-Natta type of catalysts for olefin polymerisation, to the catalysts as such, and to their use in polymerising olefins.
Abstract:
Disclosed is the homogenous reaction at 40-200° C. of MgX12−nR1OH (where n=2.0-6.4) with TiX24 and a higher (C6-C20) alkyl ester of a carboxylic acid, optionally in the presence of a solvent. In such a completely homogenous reaction, no carrier appears. In order to obtain a product in the liquid stage, the molar ratio between the ester and the MgX12.nR1OH should be at least 0.8/j wherein j is the number of carboxyl groups in the ester. If the ester has two carboxyl groups, for instance, j is 2 and the molar ratio should be at least 0.8/2, that is, 0.4.
Abstract:
A multimodal linear low density polyethylene polymer having a final density of 900 to 940 kg/m3, and containing at least one α-olefin comonomer in addition to ethylene comprising: (A) 30 to 60 wt % of a lower molecular weight component being an ethylene homopolymer or a copolymer of ethylene and at least one α-olefin; and (B) 70 to 40 wt % of a higher molecular weight component being a copolymer of ethylene and at least one α-olefin, said α-olefin being the same or different from any α-olefin used in component (A) but with the proviso that both components (A) and (B) are not polymers of ethylene and butane alone; wherein the multimodal LLDPE has a dart drop of at least 700 g; and wherein components (A) and (B) are obtainable using a Ziegler-Natta catalyst.
Abstract:
The invention provides a process for producing an olefin polymerization catalyst, comprising an organometallic compound of a transition metal or of an actinide or lanthanide, in the form of solid catalyst particles, comprising forming a liquid/liquid emulsion system which comprises a solution of one or more catalyst components dispersed in a solvent immiscible therewith; and solidifying said dispersed phase to convert said droplets to solid particles comprising the catalyst and optionally recovering said particles.
Abstract:
The present invention relates to a process for the production of catalysts, particularly of Ziegler-Natta type of catalysts for olefin polymerisation, to the catalysts as such, and to their use in polymerising olefins.
Abstract:
The invention relates to a complex comprising a magnesium dihalide and an electron donor. It is a complex of the magnesium dihalide and the electron donor and has the formula (I): MgX2·[R(OR′)n]m (I) wherein MgX2 is the magnesium dihalide and R(OR′)n is the electron donor, X is a halogen, R is an n-valent C1-C20aliphatic group, an n-valent C7-C27 araliphatic group or an n-valent C2-C22 acylic group, R′ is a C1-C20 alkyl group or a C7-C27 aralkyl group, n is a number from 1 to 6 and m is defined as a number 0.5≦m≦2.0. The invention also relates to the preparation process of such a complex, as well as the use thereof for the preparation of olefin polymerization catalyst components.
Abstract:
The invention relates to a new process for the preparation of an olefin polymerization catalyst component, as well as a new polymerization catalyst component and its use. In the process, a magnesium dialkyl or diahlide or alkyl alkoxide is reacted with an alcohol and the reaction product is reacted with an unsaturated dicarboxylic acid dihalide and a titanium tetrahalide. Especially good catalyst activity and morphology are achieved by using a polyhydric alcohol such as ethylene glycol.
Abstract:
A process for homo or copolymerizing propylene, wherein propylene is polymerized in the presence of a catalyst at an elevated temperature in a reaction medium, in which a major part is formed by propylene. The polymerization is carried in at least one slurry reactor in the presence of liquid propylene at a temperature between 80° C. and the critical temperature of the reaction medium and a catalyst system producing within said temperature range a high productivity and essentially constant isotacticity within wide melt index range.
Abstract:
In the polymerization of C3-C12-&agr;-olefins, the activity of the catalyst and the isotacticity and molecular weight of the polymer product can be adjusted and improved in a controlled manner by a new process wherein A) a catalyst system is prepared by bringing a support which comprises magnesium chloride, a derivative thereof or a reagent forming it into contact with at least titanium tetrachloride or a reagent forming it, in order to produce a titanated support; by bringing the titanated support into contact with at least a group 1, 2 or 13 metal compound which contains a C1-C10-alkyl and activates titanium tetrachloride to a catalytically active titanium group, in order to produce an activated support; and by bringing a substance selected from among the said support, titanated support and activated support into contact with at least one donor or a reagent forming it, in order to produce a catalyst system B) polymerization is carried out using the catalyst system by bringing it into contact with at least a C3-C12-&agr;-olefin, whereupon poly-C3-C12-&agr;-olefin chains are formed in the catalytically active titanium groups, and preferably by bringing the said catalyst system, the said C3-C12-&agr;-olefin and the said poly-C3-C12-&agr;-olefin chains into contact with hydrogen or some other similar chain transfer agent, whereupon a poly-C3-C12-&agr;-olefin terminated with hydrogen or suchlike is formed. In the process the improvement is achieved so that, in step A), i) a first controlled amount of a less soluble internal donor and a second controlled amount of a more soluble internal donor are provided on the surface of the said support, titanated support or activated support, in order to produce an internal donoration product, and ii) the internal donoration product is brought into contact with at least one eluant eluting the more soluble internal donor and with at least one external donor or a reagent forming it, in order to produce an external donoration product, the catalyst system thereby formed having at least catalytically active titanium groups, the said first controlled amount of the less soluble internal donor and the said second controlled amount comprising external donor.