Abstract:
A solid component of catalyst for the (co)polymerization of ethylene and &agr;-olefins contains magnesium-carboxylate bonds and transition metal-carboxylate and can be represented by the formula: M1Mg(0.3-20)X(2-60)Al(0-6)(R—COO)(0.1-3) (I) wherein: M is at least one metal selected from titanium, vanadium, zirconium and hafnium, X is a halogen excluding iodine, and R is an aliphatic, cycloaliphatic or aromatic hydrocarbon radical, containing at least 4 carbon atoms. A description follows of the preparation of a solid component of catalyst (I) and its use in procedures for the (co)polymerization of ethylene and &agr;-olefins.
Abstract:
The invention relates to a new process for the preparation of an olefin polymerization catalyst component, as well as a new polymerization catalyst component and its use. In the process, a magnesium dialkyl or diahlide or alkyl alkoxide is reacted with an alcohol and the reaction product is reacted with an unsaturated dicarboxylic acid dihalide and a titanium tetrahalide. Especially good catalyst activity and morphology are achieved by using a polyhydric alcohol such as ethylene glycol.
Abstract:
The present invention relates to a catalyst composition and a method for making the catalyst composition of a polymerization catalyst and a carboxylate metal salt. The invention is also directed to the use of the catalyst composition in the polymerization of olefin(s). In particular, the polymerization catalyst system is supported on a carrier.
Abstract:
The present invention relates to supported catalysts for the polymerization of alpha-olefins which comprise the reaction product of: (a) an Al-alkyl compound; (b) a silicon compound containing at least one Si—OR or Si—OCOR or Si—NR2 bond, R being a hydrocarbyl radical; (c) a solid comprising, as essential support, a Mg dihalide in active form and, supported thereon, a Ti halide or a halo-Ti-alcoholate and a particular type of electron donor compound. The present invention also relates to supported catalyst components.
Abstract:
The present invention relates to the use of at least one solid compound that when used with a polymerization catalyst in a polymerization process results in a phase change of the solid compound to a liquid that renders the polymerization catalyst substantially or completely inactive.
Abstract:
A method for making an oil soluble coking process additive, includes the steps of: providing mixture of a metal salt in water wherein the metal salt contains a metal selected from the group consisting of alkali metals, alkaline earth metals and mixtures thereof; providing a heavy hydrocarbon; forming an emulsion of the mixture and the heavy hydrocarbon; heating the emulsion so as to react the metal salt with components of the heavy hydrocarbon so as to provide a treated hydrocarbon containing oil soluble organometallic compound, wherein the organometallic compound includes the metal and is stable at a temperature of at least about 300° C. The oil soluble additive and a process using same are also disclosed.
Abstract:
The present invention relates to a catalyst composition and a method for making the catalyst composition of a polymerization catalyst and a carboxylate metal salt. The invention is also directed to the use of the catalyst composition in the polymerization of olefin(s). In particular, the polymerization catalyst system is supported on a carrier. More particularly, the polymerization catalyst comprises a bulky ligand metallocene-type catalyst system.
Abstract:
Novel acid-blocked amine catalysts and their use in the preparation of polyurethanes. The acid-blocked amine catalysts have the general structure shown below: wherein A is the residue of an organic acid anhydride; R1 is H or C1 to C6 alkyl; R2 is H or C1 to C6 alkyl; n is an integer of 0 to 10; and B is a compound containing a protonated amine and one or more primary amine, secondary amine, or tertiary amine groups.
Abstract:
In the invention a catalyst composition intended for the polymerization of olefins has been provided, which has been prepared by bringing together magnesium chloride, a lower alcohol, a titanium compound and an ester of phthalic acid. The procatalyst composition is active and stereospecific and it simultaneously has a titanium and phthalic acid content as low as possible. These good properties have been achieved by carrying out a transesterification between the lower alcohol and the ester of the phthalic acid, whereby the alkoxy group of the phthalic acid comprises at least five carbon atoms.