Abstract:
A complex of implant and cultured periodontal ligament cell sheet, that can be satisfactorily stabilized into the bone through periodontal ligament tissue, is provided. A fixture of the inserted implant is coated with calcium phosphate and the cultured periodontal ligament cell sheet is brought into intimate contact with the implant.
Abstract:
A method for producing multilayered cell sheets, including producing a vascular bed which includes an artery-vein loop and in which a capillary vascular network is constructed; layering cell sheets on the vascular bed; and perfusing a culture medium in vitro to construct a vascular network in the cell sheets. The production method enables vascular networks to be constructed in cell sheets and enables thick multilayered cell sheets to foe easily produced by layering the cell sheets. Such thick multilayered cell sheets are useful as in vivo tissue-like products for regenerative medicine for various tissues and for evaluation of drugs and the like.
Abstract:
The present invention provides a method for producing a myocardial sheet using a group of cells derived from embryonic stem cells. This method is characterized by mixing Flk/KDR positive cells, cardiomyocytes, endothelial cells, and mural cells, all derived from embryonic stem cells, and culturing the mixed cells. Furthermore, the myocardial sheet can be used as a therapeutic agent for heart diseases since VEGF is released from the sheet.
Abstract:
An anterior ocular segment related cell sheet or three-dimensional structure that have only a few structural defects as they have been recovered retaining the intercellular desmosome structure and the basement membrane-like protein between cell and substrate. The anterior ocular segment related cell sheet or three-dimensional structure is produced by a process comprising the steps of cultivating cells on a cell culture support comprising a substrate having its surface covered with a temperature responsive polymer having an upper or lower critical dissolution temperature of 0-80° C. with respect to water, optionally stratifying the layer of cultured cells by the usual method, and thereafter, (1) adjusting the temperature of the culture solution to either above the upper critical dissolution temperature or below the lower critical dissolution temperature, and further optionally (2) bringing the cultured anterior ocular segment related cell sheet or three-dimensional structure into close contact with a polymer membrane, and (3) detaching the sheet or three-dimensional structure together with the polymer membrane.
Abstract:
The purpose of the present invention is to obtain an alternative to a substitute of the mucosa in the middle ear which is engrafted on the surface of the bone in the middle ear, hyperplasia of the granulation tissue and the bone and the development of the fibroblast cell sir the middle ear are suppressed, and to obtain a middle ear mucosa-like cell sheet retaining cilia in the surface layer, comprising culturing nasal epithelium cells on a cell culture substrate coated with a polymer whose hydration force changes within a temperature range of 0 to 80 ° C., wherein the cells are cultured within a temperature range where the hydration force of the polymer is weak, and then changing the temperature to a temperature at which the hydration force is strong to recover the cultured cell sheet.
Abstract:
A cell culture apparatus includes: an isolator in which a sterile space accommodating a cell incubator filled with a culture solution containing cells to be cultured is disposed; a sampling unit configured to sample the culture solution in the cell incubator; a delivery flow path through which an inside of the sterile space and an outside of the sterile space communicate with each other, the delivery flow path configured to limit a flow in the delivery flow path to a direction that is directed from the inside of the sterile space toward the outside of the sterile space; and a culture solution delivering section configured to deliver the sampled culture solution to the outside of the sterile space via the delivery flow path.
Abstract:
A method of measuring a pH of a solution includes: emitting light beams of two wavelengths from one side of a measuring region of a solution into which an indicator is mixed, while pulsating the solution in the measuring region; receiving at least one of transmitted light beams and reflected light beams of the emitted light beams on the other side of the measuring region, while pulsating the solution in the measuring region; obtaining absorbances of the two wavelengths based on the received at least one of the transmitted light beams and the reflected light beams; obtaining an absorbance ratio from the obtained absorbances ; and calculating a pH value of the solution based on the obtained absorbance ratio and an absorbance ratio/pH value correspondence database which is previously stored.
Abstract:
This invention provides a cell pattern recovery tool comprising a base material layer having a surface subjected to easy adhesion treatment, a temperature responsive polymer layer that is provided on the base material layer and has a surface subjected to silane treatment, and a cell adhesion inhibiting material layer provided on the temperature responsive polymer layer. According to the present invention, a cell pattern can be rapidly recovered while maintaining the cell pattern stably and reliably under minimally invasive conditions for the cells.
Abstract:
Parenchymal cells are cultivated on cultivated endothelial cells or cultivated fibroblasts which have been separated by a surface of a specific hydrophilic polymer, and which have been patterned. A culture which contains thus formed patterned spheroids of cultivated parenchymal cells is thereby provided by this invention. This culture maintains a function which is specific to the parenchymal cells over a long period of time.
Abstract:
A cell culture support is first prepared that is coated on a surface with a polymer the hydration force of which changes in a temperature range of 0-80° C.; cancer cells are then cultivated on the support in a temperature region where the polymer has weak hydration force; thereafter, the culture solution is adjusted to a temperature at which the polymer has a stronger hydration force, whereby the cultured cancer cells are detached; the detached cancer cells are then transplanted to a specified site of an animal on which transplantation is to be performed; this method is an efficient way of cancer cells transplantation.