摘要:
A terminal isocyanate group-containing polyamide resin can be produced by reacting a terminal carboxyl group-containing oligomer and a polyisocyanate compound at such a ratio that the amount of an isocyanate group exceeds that of a carboxyl group. An alkoxysilane-modified polyamide resin can be produced by reacting the terminal isocyanate group-containing polyamide resin with an alkoxysilane compound containing a secondary amine.
摘要:
Propylene oxide is added to an active hydrogen compound in the presence of an alkali metal hydroxide catalyst in an amount of from 0.05 to 0.5 mole per mole of the active hydrogen compound at a reaction temperature of from 60 to 98.degree. C. at a reaction pressure less than or equal to 4 kg/cm.sup.2 to prepare a polyoxyalkylene polyol which has a hydroxyl value of from 10 to 35 mg KOH/g, a monool content less than or equal to 15 mol %, a Head-to-Tail bond selectivity greater than or equal to 96 percent, and low viscosity. A polymer polyol is prepared by polymerizing an ethylenically unsaturated monomer in the polyoxyalkylene polyol. A flexible polyurethane foam is prepared by reacting the polyoxyalkylene polyol or the polymer polyol with an organic polyisocyanate compound in the presence of a foaming agent, a catalyst, a surfactant, a crosslinking agent and other additives. The thus-obtained polyurethane foams have less closed cells and are more excellent in properties such as hardness, humid aged compression set and impact resiliency.
摘要:
High concentration-low viscosity polymer-polyols are prepared by polymerizing mixtures of acrylonitrile and styrene in polyols, which are free of any polymerizable carbon-carbon double bond, in the presence of alkyl-substituted tertiary amines. Without use, as a dispersion stabilizer, of organic compounds which have a polymerizable carbon-carbon double bond and terminal hydroxyl groups, there can be obtained polymer-polyols which have a concentration of the polymer of 33-60 wt % and a glass transition temperature of the polymer of 90.degree.-120.degree. C.
摘要:
High concentration-low viscosity polymer-polyols are prepared by polymerizing mixtures of acrylonitrile and styrene in polyols, which are free of any polymerizable carbon-carbon double bond, in the presence of alkyl-substituted tertiary mines. Without use, as a dispersion stabilizer, of organic compounds which have a polymerizable carbon-carbon double bond and terminal hydroxyl groups, there can be obtained polymer-polyols which have a concentration of the polymer of 33-60 wt % and a glass transition temperature of the polymer of 90.degree.-120.degree. C.
摘要:
Propylene oxide is added to an active hydrogen compound in the presence of an alkali metal hydroxide catalyst in an amount of from 0.05 to 0.5 mole per mole of the active hydrogen compound at a reaction temperature of from 60 to 98.degree. C. at a reaction pressure less than or equal to 4 kg/cm.sup.2 to prepare a polyoxyalkylene polyol which has a hydroxyl value of from 10 to 35 mg KOH/g, a monool content less than or equal to 15 mol %, a Head-to-Tail bond selectivity greater than or equal to 96 percent, and low viscosity. A polymer polyol is prepared by polymerizing an ethylenically unsaturated monomer in the polyoxyalkylene polyol. A flexible polyurethane foam is prepared by reacting the polyoxyalkylene polyol or the polymer polyol with an organic polyisocyanate compound in the presence of a foaming agent, a catalyst, a surfactant, a crosslinking agent and other additives. The thus-obtained polyurethane foams have less closed cells and are more excellent in properties such as hardness, humid aged compression set and impact resiliency.
摘要:
Disclosed are a polyol with a molecular weight distribution Mw/Mn of 4 or more, obtained by reacting a compound comprising an alkylene oxide compound (II) having a hydroxyl group in a base polyol (I) with a molecular weight of 2000 or more; and a polyol composition for a flexible polyurethane foam, comprising a polyol compound and a crosslinker, wherein the crosslinker comprises a polyol (a) with a hydroxyl value of 50 to 1100 mgKOH/g and with a primary hydroxylate ratio of 25% or more and 60% or less, which is obtained by an addition of a compound comprising alkylene oxide compound (ii) having a hydroxyl group to active hydrogen compound (i).
摘要:
The present invention provides a polyester polyol, preferably a plant-derived polyester polyol, suitable for a composition for polyurethane foam that contributes to the reduction of load on the environment and has a good balance of high resilience, moderate hardness, and high durability as a cushioning material for vehicle seat cushions. A polyester polyol having a hydroxyl value in the range of 15 to 100 mgKOH/g according to the present invention is produced by a condensation of raw materials comprising at least one selected from the group consisting of fatty acids having a hydroxy group and fatty acid esters having a hydroxy group with a polyhydric alcohol having an average number of functional groups of more than three but not more than eight. The raw materials contain 90% to 100% by mass of a fatty acid having a hydroxy group and a fatty acid ester having a hydroxy group in total.
摘要:
A thermoplastic polymer compound can be obtained by allowing a compound having a bivalent organic group to react with a polyoxyalkylene diol obtained by addition-polymerization of an urea compound having a partial structure refractivity of 14 to 35 and a dipole moment of 2.5 D to 5.5 D with an alkylene oxide. A thermoplastic polymer composition comprises the thermoplastic polymer compound and an inorganic salt of an alkali metal or the like. The polymer compound and the polymer composition are useful as an antistatic agent and have excellent antistatic properties and excellent transparency.
摘要:
The object is to provide a method for producing a polyoxyalkylene polyol and a method for producing a derivative thereof wherein the remaining catalyst compound is efficiently removed from a crude polyoxyalkylene polyol by a simple manner, and a method for producing a polyoxyalkylene polyol wherein a crude polyoxyalkylene polyol is produced by addition polymerization of an epoxide compound to an active hydrogen compound using as a catalyst a compound having a P═N bond, then, the crude polyoxyalkylene polyol is allowed to contact with a solid acid having a specific surface area of 450 to 1200 m2/g and an average pore diameter of 40 to 100 Å to control the catalyst-remaining amount in the polyoxyalkylene polyol to 150 ppm or less, and a method for producing a derivative of the-above-described polyol are provided.