Abstract:
Disclosed herein are systems and methods for treating the surface of a microelectronic substrate, and in particular, relate to an apparatus and method for scanning the microelectronic substrate through a cryogenic fluid mixture used to treat an exposed surface of the microelectronic substrate. The fluid mixture may be expanded through a nozzle to form an aerosol spray or gas cluster jet (GCJ) spray may impinge the microelectronic substrate and remove particles from the microelectronic substrate's surface. In one embodiment, the fluid mixture may be maintained to prevent liquid formation within the fluid mixture prior to passing the fluid mixture through the nozzle. The fluid mixture may include nitrogen, argon, helium, neon, xenon, krypton, carbon dioxide, or any combination thereof.
Abstract:
A wafer edge lift pin of an apparatus for manufacturing a semiconductor device is described. The wafer edge lift pin includes a top section containing a notch portion having a horizontal upwardly facing surface for supporting a wafer and a vertically sloped surface for lateral confinement of the wafer, wherein the notch portion is horizontally swept away from the wafer along a radius, a base section below the top section, the base section having a diameter that is greater than a diameter of the top section across the notch portion, and a bottom section having a diameter that is smaller than the diameter of the base section. The apparatus includes a process chamber where the wafer is processed, a chuck assembly on which the wafer is loaded, and a plurality of at least three wafer edge lift pins for moving the wafer up and down.
Abstract:
Cleaning systems and methods for semiconductor fabrication use rotatable and translatable chuck assemblies that incorporate a compact drive system to cause chuck rotation. The system uses an offset drive gear that drives a ring gear. This reduces components whose friction or lubricants might generate undue contamination. The low friction chuck functionality of the present invention is useful in any fabrication tool in which a workpiece is supported on a rotating support during a treatment. The chuck is particularly useful in cryogenic cleaning treatments.
Abstract:
A method and processing system are provided for independent temperature and hydration control for an etching solution used for treating a wafer in process chamber. The method includes circulating the etching solution in a circulation loop, maintaining the etching solution at a hydration setpoint by adding or removing water from the etching solution, maintaining the etching solution at a temperature setpoint that is below the boiling point of the etching solution in the circulation loop, and dispensing the etching solution into the process chamber for treating the wafer. In one embodiment, the dispensing includes dispensing the etching solution into a processing region proximate the wafer in the process chamber, introducing steam into an exterior region that is removed from the wafer in the process chamber, and treating the wafer with the etching solution and the steam.
Abstract:
A method for selectively removing silicon nitride is described. In particular, the method includes providing a substrate having a surface with silicon nitride exposed on at least one portion of the surface and SiGex (x is greater than or equal to zero) exposed on at least another portion of the surface, and dispensing an oxidizing agent onto the surface of the substrate to oxidize the exposed SiGex. Thereafter, the method includes dispensing a silicon nitride etching agent as a liquid stream onto the surface of the substrate to remove at least a portion of the silicon nitride.
Abstract:
Rinsing methodologies and components to accomplish rinsing of tool surfaces in tools that are used to process one or more microelectronic workpieces. The invention can be used to rinse structures that overlie a workpiece being treated in such a manner to function in part as a lid over the process chamber while also defining a tapering flow channel over the workpiece. Rather than spray rinsing liquid onto the surface in a manner that generates undue splashing, droplet, or mist generation, a swirling flow of rinse liquid is generated on a surface of at least one fluid passage upstream from the surface to be rinsed. The swirling flow then provides smooth, uniform wetting and sheeting action to accomplish rinsing with a significantly reduced risk of generating particle contamination.
Abstract:
A method for selectively removing silicon nitride is described. In particular, the method includes providing a substrate having a surface with silicon nitride exposed on at least one portion of the surface and SiGex (x is greater than or equal to zero) exposed on at least another portion of the surface, and dispensing an oxidizing agent onto the surface of the substrate to oxidize the exposed SiGex. Thereafter, the method includes dispensing a silicon nitride etching agent as a liquid stream onto the surface of the substrate to remove at least a portion of the silicon nitride.
Abstract:
Strategies for tool designs and their uses wherein the tools can operate in either closed or open modes of operation. The tools easily transition between open and closed modes on demand. According to one general strategy, environmentally controlled pathway(s) couple the ambient to one or more process chambers. Air amplification capabilities upstream from the process chamber(s) allow substantial flows of air to be introduced into the process chamber(s) on demand. Alternatively, the fluid pathways are easily closed, such as by simple valve actuation, to block egress to the ambient through these pathways. Alternative flows of nonambient fluids can then be introduced into the process chamber(s) via pathways that are at least partially in common with the pathways used for ambient air introduction. In other strategies, gap(s) between moveable components are sealed at least with flowing gas curtains rather than by relying only upon direct physical contact for sealing.
Abstract:
A method for performing an oxide removal process is described. The method includes providing a substrate having an oxide layer, and preparing a patterned mask layer on the oxide layer, wherein the patterned mask layer has a pattern exposing at least a portion of the oxide layer. An HF treatment of the substrate is performed to transfer the pattern at least partially through the oxide layer, wherein the HF treatment exposes a silicon surface. Following the performing of the HF treatment, a surface property of the silicon surface is modified, wherein the modifying includes administering at least one oxidizing agent to contact the silicon surface to cause chemical oxidation of the silicon surface. And, following the modifying of the surface property, at least a portion of the patterned mask layer or a residual portion of the patterned mask layer is removed.
Abstract:
The present invention provides techniques to more accurately control the process performance of treatments in which microelectronic substrates are treated by pressurized fluids that are sprayed onto the substrates in a vacuum process chamber. control strategies are used that adjust mass flow rate responsive to pressure readings in order to hold the pressure of a pressurized feed constant. In these embodiments, the mass flow rate will tend to vary in order to maintain pressure uniformity.