Abstract:
A non-volatile memory cell includes an access and a storage transistor coupled in series. The memory cell is formed on a thin gate well tailored for transistors with thin gate dielectrics. The access transistor is a hybrid transistor which includes a gate with a thick gate dielectric layer formed on the thin gate well.
Abstract:
An integrated circuit memory system including a substrate formed with equidistant spaced shallow trench isolation regions. Forming active regions and dummy active regions within the substrate between the equidistant spaced shallow trench isolation regions. Forming sources and drains within the active regions. Providing wordlines and source lines extending in a first direction and bitlines extending in a second direction. Forming contact regions over the dummy active regions for strapping the wordlines and the source lines to the bitlines.
Abstract:
In order to provide a method for preventing the channel length from being shortened as well as reducing the SAS resistance, the semiconductor device according to the present invention is manufactured by forming continuous linear trench lines on a semiconductor substrate, forming gate oxide lines on the semiconductor substrate between the trench lines, forming gate lines on the trench lines and the gate oxide lines, the gate lines being substantially perpendicular to the trench lines, etching the gate oxide lines and trench lines positioned between the gate lines, to form an etched region forming self aligned sources (SASs) by implanting impurity ions into the etched region, forming spacers on sidewalls of the gate lines, and implanting impurity ions in the SAS region using the spacers as a mask.
Abstract:
A flash memory device having a reduced source resistance and a fabrication method thereof are disclosed. An example flash memory includes a cell region including a gate, a source line, a drain contact, and a cell trench area for device isolation on a silicon substrate. The example flash memory also includes a peripheral region positioned around the cell region and including a subsidiary circuit and a peripheral trench area for device isolation on the silicon substrate, wherein the cell trench area of the cell region is shallower than the peripheral trench area of the peripheral region.
Abstract:
The present invention relates to a method of manufacturing a flash memory device. In the method, a low-voltage transistor is formed to have a DDD structure same to a high-voltage transistor when a peripheral region is formed in the manufacture process of the flash memory device. As the process for forming the LDD structure for the low voltage is omitted, the cost is reduced in the entire process of manufacturing the flash memory device. Also, as the junction breakdown voltage of the low-voltage transistor is increased and current is increased, the device characteristics is improved
Abstract:
A method of forming a device is disclosed. The method includes providing a substrate and forming a device layer on the substrate having a formed thickness TFD. A capping layer is formed on the substrate having a formed thickness TFC. Forming the capping layer consumes a desired amount of the device layer to cause the thickness of the device layer to be about the target thickness TTD. The thickness of the capping layer is adjusted from TFC to about a target thickness TTC.
Abstract:
A method of forming a device is disclosed. The method includes providing a substrate prepared with a cell area separated by other active areas by isolation regions. First and second gates of first and second transistors in the cell area are formed. The first gate includes first and second sub-gates separated by a first intergate dielectric layer. The second gate includes a second sub-gate surrounding a first sub-gate. The first and second sub-gates of the second gate are separated by a second intergate dielectric layer. First and second junctions of the first and second transistors are formed. The method also includes forming a first gate terminal coupled to the second sub-gate of the first transistor and a second gate terminal coupled to at least the first sub-gate of the second transistor.
Abstract:
The present invention relates to a method manufacturing a code address memory (CAM) cell. The present invention uses a dielectric film in which an oxide film and a nitride film between a floating gate and a control gate in a flash memory cell are stacked as a gate insulating film between a semiconductor substrate and a gate in the CAM cell. Therefore, the present invention can reduce the area of a peripheral circuit region and stably secure repaired data since the CAM cell can be stably driven at a low operating voltage and additional boosting circuit is thus not required.
Abstract:
A non-volatile memory cell includes an access and a storage transistor coupled in series. The memory cell is formed on a thin gate well tailored for transistors with thin gate dielectrics. The access transistor is a hybrid transistor which includes a gate with a thick gate dielectric layer formed on the thin gate well.
Abstract:
In an non-limiting example, we provide a substrate having a cell region, and non-cell regions. We form a tunneling dielectric layer, a charge storing layer, a top insulating layer (e.g., ONO), over the substrate. Then we form a conductive pad layer over the top insulating layer. We form isolation trenches in the pad layer, the charge storing layer and the tunneling dielectric layer and into the substrate. We form isolation regions in the isolation trenches. We remove the pad layer, charge storing layer and the tunneling dielectric layer in the non-cell regions. We form a gate layer over the pad layer and the substrate surface. We complete to form the memory (e.g., SONOS) device in the cell region and other devices in the non-cell regions of the substrate.