Abstract:
The invention relates to a storage medium comprising a security feature, having a substrate (1, 4, 10), at least one functional layer (2, 5, 11), at least one feature which is written into the functional layer (2, 5, 11) and is visible when reflected and at least one feature which is written into the functional layer (2, 5, 11) and is visible when transmitted, at least one feature being individualized and at least one feature having a diffractive structure. The invention solves the technical problem of providing a larger variety of combinations of different security features. The invention also relates to a method for producing a storage medium comprising a security feature.
Abstract:
The invention relates to a lithograph for producing digital holograms in a storage medium (4), having a light source (6, 10) for producing a write beam (12) with a predefined beam cross section, having a writing lens (14) for focusing the write beam (12) onto the storage medium (4) to be written, the writing lens (14) being arranged in a lens holder (16), and having drive means for the two-dimensional movement of the write beam relative to the storage medium. The technical problem of writing computer-generated holograms as quickly as possible and with little effort by means of optical lithography is solved in that a first drive device (18) is provided for moving the lens holder (16) substantially at right angles to the write beam (12) and in that the aperture of the writing lens (14) is smaller than the beam cross section of the write beam (12).The inventon also relates to a method for the lithographic production of a hologram in a storage medium.
Abstract:
A device providing for microstructuring a storage medium includes a radiation source for producing an at least partially coherent beam from electromagnetic radiation, a modulator provided with a plurality of individually switchable modulator elements, a beam-forming optical element for illuminating the modulator, a reducing optical element for reducing a beam radiated by the modulator, and a transport table for displacing the storage medium in relation to the reducing optical element. The device solves technical problems caused by writing of microstructuring and individual diffractive optical elements, in particular computer-generated holograms having a high speed and high writing energy. The device is achieved in that the reducing optical element is configured with limited diffraction and produces a surface reduction of at least 25 from a surface of the individually switchable modulator elements.
Abstract:
The present invention relates to a method of producing digital holograms in a storage medium, in which the technical problem of writing computer-generated holograms by means of optical lithography as quickly as possible and with little effort with simultaneous accurate control of the timed triggering and the positioning of the write beam is achieved in that a write beam is focused onto the storage medium and moved one-dimensionally relative to the storage medium, in that a scanning beam is focused onto a trigger mask having a plurality of trigger lines and moved one-dimensionally transversely relative to the trigger lines, the movement of the scanning beam being coupled with the movement of the write beam, in that, during the scanning of the trigger lines, a timed trigger signal is generated as a function of the arrangement of the trigger lines, in that, with the aid of the timed trigger signal, the intensity of the write beam on the storage medium is controlled, and in that the hologram is written line by line by introducing radiation energy point by point, the storage medium being displaced transversely with respect to the scanning direction of the lines by a predefined distance to write adjacent lines of the hologram.The technical problem is also solved by a lithograph for producing digital holograms.
Abstract:
The invention relates to a hologram carrier having a hologram surface and a reference surface to facilitate the acquisition of the hologram surface by a device. In this case, provision is made for the reference surface to comprise at least one step, which is arranged to interengage with a complementary formation on the device in order to align said device.
Abstract:
A holographic data storage medium includes a polymer film which is set up as a storage layer and whose surface structure can be changed locally by heating. The polymer film is set up for the storage of holographic information via the local surface structure of the polymer film. A reflective layer can be provided on the data storage medium.
Abstract:
Method of individualizing labels, in which a plurality of labels is formed from a label tape, characterized in that the shape of each label is formed individually.
Abstract:
The invention relates to a storage medium, preferably a carrier. The aim of the invention is to make manipulation of data information of the storage medium or of non-authorized copies of the storage medium visible. For this purpose, the storage medium comprises a transparent layer and a layer produced from an opaque material, the layer of the opaque material having a section with a medium transmittance between 0% and 100% which is semi-transparent to electromagnetic radiation and an informative content comprising the value of the medium transmittance being stored in the storage medium.
Abstract:
The invention relates to a storage medium comprising a security feature, having a substrate (1, 4, 10), at least one functional layer (2, 5, 11), at least one feature which is written into the functional layer (2, 5, 11) and is visible when reflected and at least one feature which is written into the functional layer (2, 5, 11) and is visible when transmitted, at least one feature being individualized and at least one feature having a diffractive structure. The invention solves the technical problem of providing a larger variety of combinations of different security features. The invention also relates to a method for producing a storage medium comprising a security feature.
Abstract:
A device providing for microstructuring a storage medium includes a radiation source for producing an at least partially coherent beam from electromagnetic radiation, a modulator-provided with a plurality of individually switchable modulator elements, a beam-forming optical element for illuminating the modulator, a reducing optical element for reducing a beam radiated by the modulator, and a transport table for displacing the storage medium in relation to the reducing optical element. The device solves technical problems caused by writing of microstructuring and individual diffractive optical elements, in particular computer-generated holograms having a high speed and high writing energy. The device is achieved in that the reducing optical element is configured with limited diffraction and produces a surface reduction of at least 25 from a surface of the individually switchable modulator elements.