摘要:
Delivering targeted content includes collecting, via at least one tangible processor, user activity data for users during a specified time period. questions asked by the users during the specified time period are extracted from the user activity data, via the at least one tangible processor, and stored in user profiles for the users. The user profiles are clustered, via the at least one tangible processor, based on the questions asked. Targeted content is delivered, via the at least one tangible processor, to a subset of the users based on the clustering.
摘要:
Disclosed herein are systems, methods, and non-transitory computer-readable storage media for presenting a machine translation and alternative translations to a user, where a selection of any particular alternative translation results in the re-ranking of the remaining alternatives. The system then presents these re-ranked alternatives to the user, who can continue proofing the machine translation using the re-ranked alternatives or by typing an improved translation. This process continues until the user indicates that the current portion of the translation is complete, at which point the system moves to the next portion.
摘要:
Disclosed herein are systems, methods, and non-transitory computer-readable storage media for predicting probabilities of words for a language model. An exemplary system configured to practice the method receives a sequence of words and external data associated with the sequence of words and maps the sequence of words to an X-dimensional vector, corresponding to a vocabulary size. Then the system processes each X-dimensional vector, based on the external data, to generate respective Y-dimensional vectors, wherein each Y-dimensional vector represents a dense continuous space, and outputs at least one next word predicted to follow the sequence of words based on the respective Y-dimensional vectors. The X-dimensional vector, which is a binary sparse representation, can be higher dimensional than the Y-dimensional vector, which is a dense continuous space. The external data can include part-of-speech tags, topic information, word similarity, word relationships, a particular topic, and succeeding parts of speech in a given history.
摘要:
Disclosed herein are systems, methods, and non-transitory computer-readable storage media for collecting web data in order to create diverse language models. A system configured to practice the method first crawls, such as via a crawler operating on a computing device, a set of documents in a network of interconnected devices according to a visitation policy, wherein the visitation policy is configured to focus on novelty regions for a current language model built from previous crawling cycles by crawling documents whose vocabulary considered likely to fill gaps in the current language model. A language model from a previous cycle can be used to guide the creation of a language model in the following cycle. The novelty regions can include documents with high perplexity values over the current language model.
摘要:
A machine translation method, system for using the method, and computer readable media are disclosed. The method includes the steps of receiving a source language sentence, selecting a set of target language n-grams using a lexical classifier and based on the source language sentence. When selecting the set of target language n-grams, in at least one n-gram, n is greater than 1. The method continues by combining the selected set of target language n-grams as a finite state acceptor (FSA), weighting the FSA with data from the lexical classifier, and generating an n-best list of target sentences from the FSA. As an alternate to using the FSA, N strings may be generated from the n-grams and ranked using a language model. The N strings may be represented by an FSA for efficiency but it is not necessary.
摘要:
Disclosed herein are systems, methods and non-transitory computer-readable media for performing speech recognition across different applications or environments without model customization or prior knowledge of the domain of the received speech. The disclosure includes recognizing received speech with a collection of domain-specific speech recognizers, determining a speech recognition confidence for each of the speech recognition outputs, selecting speech recognition candidates based on a respective speech recognition confidence for each speech recognition output, and combining selected speech recognition candidates to generate text based on the combination.
摘要:
Disclosed herein are systems and methods to incorporate human knowledge when developing and using statistical models for natural language understanding. The disclosed systems and methods embrace a data-driven approach to natural language understanding which progresses seamlessly along the continuum of availability of annotated collected data, from when there is no available annotated collected data to when there is any amount of annotated collected data.
摘要:
In accordance with one aspect of the present invention, an automated method of and system for generating a response to a text-based natural language message is disclosed. The method includes identifying a first selected input clause in a sentence in the text-based natural language message. Also, assigning a semantic tag to the first selected input clause and matching the semantic tag to a historical input tag. The historical input tag associated with a first previously generated response clause. Further; generating an output response message based on the historical response clause, the output response message derived from the historical input tag and a second previously generated response clause. The system includes means for performing the method steps.
摘要:
A system and method are disclosed that improve automatic speech recognition in a spoken dialog system. The method comprises partitioning speech recognizer output into self-contained clauses, identifying a dialog act in each of the self-contained clauses, qualifying dialog acts by identifying a current domain object and/or a current domain action, and determining whether further qualification is possible for the current domain object and/or current domain action. If further qualification is possible, then the method comprises identifying another domain action and/or another domain object associated with the current domain object and/or current domain action, reassigning the another domain action and/or another domain object as the current domain action and/or current domain object and then recursively qualifying the new current domain action and/or current object. This process continues until nothing is left to qualify.
摘要:
Systems, methods, and non-transitory computer-readable media for referring to entities. The method includes receiving domain-specific training data of sentences describing a target entity in a context, extracting a speaker history and a visual context from the training data, selecting attributes of the target entity based on at least one of the speaker history, the visual context, and speaker preferences, generating a text expression referring to the target entity based on at least one of the selected attributes, the speaker history, and the context, and outputting the generated text expression. The weighted finite-state automaton can represent partial orderings of word pairs in the domain-specific training data. The weighted finite-state automaton can be speaker specific or speaker independent. The weighted finite-state automaton can include a set of weighted partial orderings of the training data for each possible realization.