摘要:
Systems, methods, and non-transitory computer-readable media for referring to entities. The method includes receiving domain-specific training data of sentences describing a target entity in a context, extracting a speaker history and a visual context from the training data, selecting attributes of the target entity based on at least one of the speaker history, the visual context, and speaker preferences, generating a text expression referring to the target entity based on at least one of the selected attributes, the speaker history, and the context, and outputting the generated text expression. The weighted finite-state automaton can represent partial orderings of word pairs in the domain-specific training data. The weighted finite-state automaton can be speaker specific or speaker independent. The weighted finite-state automaton can include a set of weighted partial orderings of the training data for each possible realization.
摘要:
Systems, methods, and non-transitory computer-readable media for referring to entities. The method includes receiving domain-specific training data of sentences describing a target entity in a context, extracting a speaker history and a visual context from the training data, selecting attributes of the target entity based on at least one of the speaker history, the visual context, and speaker preferences, generating a text expression referring to the target entity based on at least one of the selected attributes, the speaker history, and the context, and outputting the generated text expression. The weighted finite-state automaton can represent partial orderings of word pairs in the domain-specific training data. The weighted finite-state automaton can be speaker specific or speaker independent. The weighted finite-state automaton can include a set of weighted partial orderings of the training data for each possible realization.
摘要:
Systems, methods, and non-transitory computer-readable media for referring to entities. The method includes receiving domain-specific training data of sentences describing a target entity in a context, extracting a speaker history and a visual context from the training data, selecting attributes of the target entity based on at least one of the speaker history, the visual context, and speaker preferences, generating a text expression referring to the target entity based on at least one of the selected attributes, the speaker history, and the context, and outputting the generated text expression. The weighted finite-state automaton can represent partial orderings of word pairs in the domain-specific training data. The weighted finite-state automaton can be speaker specific or speaker independent. The weighted finite-state automaton can include a set of weighted partial orderings of the training data for each possible realization.
摘要:
Disclosed herein are systems, computer-implemented methods, and tangible computer-readable media for referring to entities. The method includes receiving domain-specific training data of sentences describing a target entity in a context, extracting a speaker history and a visual context from the training data, selecting attributes of the target entity based on at least one of the speaker history, the visual context, and speaker preferences, generating a text expression referring to the target entity based on at least one of the selected attributes, the speaker history, and the context, and outputting the generated text expression. The weighted finite-state automaton can represent partial orderings of word pairs in the domain-specific training data. The weighted finite-state automaton can be speaker specific or speaker independent. The weighted finite-state automaton can include a set of weighted partial orderings of the training data for each possible realization.
摘要:
A method, system and computer readable medium that generates a dialog model for use in automated dialog is disclosed. The method may include collecting a plurality of task-oriented dialog interactions between users and human agents for a given domain, identifying one or more task in each dialog interaction, identifying one or more subtasks in each identified task and associating relations between the subtasks, identifying a dialog act and a set of predicate-argument relations for each subtask, generating one or more clauses from the set of predicate-argument relations, storing the tasks, subtasks, dialog acts predicate-argument relations, and clauses from each dialog interaction as a dialog interaction set, generating a dialog management model using the stored dialog interaction sets.
摘要:
A method, processing device, and machine-readable medium are provided. Costs of states of a state space are calculated. Each state represent one or more available product attributes having zero or more decided attribute values. The calculating is based, at least in part, on training data associated with previously requested and offered products, determining a next state such that one or more products are available and a sum of values, including a cost of a next state and a cost of a perturbation of one of the one or more requested product attribute values to reach the next state is a minimum value. A value for a product attribute is mapped according to the minimum sum of values and product attribute values of available products.
摘要:
A method, processing device, and machine-readable medium are provided. Costs of states of a state space are calculated. Each state represent one or more available product attributes having zero or more decided attribute values. The calculating is based, at least in part, on training data associated with previously requested and offered products. Determining a next state such that one or more products are available and a sum of values, including a cost of a next state and a cost of a perturbation of one of the one or more requested product attribute values to reach the next state is a minimum value. A value for a product attribute is mapped according to the minimum sum of values and product attribute values of available products.
摘要:
A method, processing device, and machine-readable medium are provided. Costs of states of a state space are calculated. Each state represent one or more available product attributes having zero or more decided attribute values. The calculating is based, at least in part, on training data associated with previously requested and offered products. determining a next state such that one or more products are available and a sum of values, including a cost of a next state and a cost of a perturbation of one of the one or more requested product attribute values to reach the next state is a minimum value. A value for a product attribute is mapped according to the minimum sum of values and product attribute values of available products.
摘要:
Disclosed herein are systems, computer-implemented methods, and computer-readable media for dialog modeling. The method includes receiving spoken dialogs annotated to indicate dialog acts and task/subtask information, parsing the spoken dialogs with a hierarchical, parse-based dialog model which operates incrementally from left to right and which only analyzes a preceding dialog context to generate parsed spoken dialogs, and constructing a functional task structure of the parsed spoken dialogs. The method can further either interpret user utterances with the functional task structure of the parsed spoken dialogs or plan system responses to user utterances with the functional task structure of the parsed spoken dialogs. The parse-based dialog model can be a shift-reduce model, a start-complete model, or a connection path model.
摘要:
Disclosed herein are systems, computer-implemented methods, and computer-readable media for dialog modeling. The method includes receiving spoken dialogs annotated to indicate dialog acts and task/subtask information, parsing the spoken dialogs with a hierarchical, parse-based dialog model which operates incrementally from left to right and which only analyzes a preceding dialog context to generate parsed spoken dialogs, and constructing a functional task structure of the parsed spoken dialogs. The method can further either interpret user utterances with the functional task structure of the parsed spoken dialogs or plan system responses to user utterances with the functional task structure of the parsed spoken dialogs. The parse-based dialog model can be a shift-reduce model, a start-complete model, or a connection path model.