PRESSURIZING HOUSING FOR A SOFT ROBOTIC ACTUATOR

    公开(公告)号:US20210039250A1

    公开(公告)日:2021-02-11

    申请号:US17081132

    申请日:2020-10-27

    Abstract: Exemplary embodiments relate to pressurizable housings for a soft robotic actuator. The pressurized housings may be divided into an upper chamber in fluid communication with an internal void of the actuator, and a lower chamber connected to an inlet and an outlet. The upper chamber and lower chamber may be separated by a piston. By supplying a fluid to the lower chamber via the inlet, the piston is moved into the space previously occupied by the upper chamber, which reduces the volume of the upper chamber and increases the pressure in the internal void. This action allows the actuator to be rapidly inflated, and further simplifies the pressurization system and reduces its weight.

    Self-contained robotic gripper system

    公开(公告)号:US10576640B2

    公开(公告)日:2020-03-03

    申请号:US16037748

    申请日:2018-07-17

    Abstract: Exemplary embodiments relate to improvements in soft robotic systems that permit a soft robotic end effector to be a self-contained system, without reliance on a tether to deliver inflation fluid to the actuator(s) of the end effector. According to some embodiments, a robotic system may be provided including a soft actuator and a hub. The body of the hub may include an integrated pressure source configured to supply inflation fluid through the actuator interface to the soft actuator. The pressure source may be, for example, a compressor (such as a twin-head compressor) or a reaction chamber configured to vaporize a fuel to create a high-temperature pressurized gas and deliver the pressurized gas to the actuator One or more accumulators may receive inflation fluid (or a partial vacuum) from the compressor over time, and store the inflation fluid under pressure, thus allowing actuation over a relatively short time period.

Patent Agency Ranking