Abstract:
A method and an apparatus for dynamically varying a clock frequency in a processor to adapt to VCC voltage changes. The method of one embodiment includes sampling a supply voltage at a plurality of locations. The values of said supply voltage are communicated to a clock generator. A clock frequency of a clock signal generated from the clock generator is adjusted in response to an evaluation of the sampled values of the supply voltage.
Abstract:
An on-die clock generator. For one aspect of the invention, the on-die clock generator includes a phase-locked loop (PLL) circuit having a first input coupled to receive an external clock signal and an output coupled to provide an on-die clock signal to be used during a normal operating mode of an integrated circuit. The on-die clock generator also includes a local clock generator circuit having an input coupled to receive the on-die clock signal and an output coupled to provide a local PLL feedback clock signal to a second input of the PLL.
Abstract:
A multi-layer electrically trainable analog neural network employing multiplexed output neurons having inputs organized into two groups, external and recurrent (i.e., feedback). Each layer of the network comprises a matrix of synapse cells which implement a matrix multiplication between an input vector and a weight matrix. In normal operation, an external input vector coupled to the first synaptic array generates a Sigmoid response at the output of a set of neurons. This output is then fed back to the next and subsequent layers of the network as a recurrent input vector. The output of second layer processing is generated by the same neurons used in first layer processing. Thus, the neural network of the present invention can handle N-layer operation by using recurrent connections and a single set of multiplexed output neurons.
Abstract:
An analog neural network is described which provides a means for reducing the sensitivity of the network to temperature and power supply variations. A first circuit is utilized for generating a signal which exhibits a dependence on temperature corresponding to the variation normally experienced by the network in response to a change in temperature. A second circuit is employed to generate another signal which exhibits a similar dependence, except on power supply variations. By coupling these signals as inputs to the neural network the sensitivity of the network to temperature and power supply fluctuations is essentially nulified.
Abstract:
The present invention covers a synapse cell for providing a weighted connection between an input voltage line and an output summing line having an associated capacitance. Connection between input and output lines in the associative network is made using one or more floating-gate transistors which provide both excitatory as well as inhibitory connections. As configured, each transistor's control gate is coupled to an input line and its drain is coupled to an output summing line. The floating-gate of the transistor is used for storing a charge which corresponds to the strength or weight of the neural connection. When a binary voltage pulse having a certain duration is applied to the control gate of the floating-gate transistor, a current is generated which acts to discharge the capacitance associated with the output summing line. The current, and therefore the resulting discharge, is directly proportional to the charge stored on the floating-gate member and the duration of the input pulse.
Abstract:
An electrically programmable and electrically erasable floating gate memory device which includes an integrally formed select device. In the n-channel embodiment, a boron region is formed adjacent to the drain region under the control gate and extends slightly under the folating gate. This region is formed using a spacer defined with an anisotropic etching step. The region, in addition to providing enhanced programming, prevents conduction when over-erasing has occurred, that is, when the erasing causes the cell to be depletion-like.
Abstract:
An apparatus for managing the temperature of an integrated circuit having a multiple core microprocessor is described. Specifically, thermal sensors are placed at potential hot spots throughout each microprocessor core. A thermal management unit monitors the thermal sensors. If a thermal sensor identifies a hot spot, the thermal management unit adjusts the operating frequency and voltage of that microprocessor core accordingly.
Abstract:
A method for dynamically varying a clock frequency in a processor. The method of one embodiment comprises driving a clock distribution network with a clock output from a phased locked loop (PLL). An adjustable clock generator is locked with the phased locked loop. The adjustable clock generator is substituted for the PLL on the clock distribution network.
Abstract:
A method for increasing the accuracy of an analog neural network which computers a sum-of-products between an input vector and a stored weight pattern is described. In one embodiment of the present invention, the method comprises initially training the network by programming the synapses with a certain weight pattern. The training may be carried out using any standard learning algorithm. Preferably, a back-propagation learning algorithm is employed.Next, the network is baked at an elevated temperature to effectuate a change in the weight pattern previously programmed during initial training. This change results from a charge redistribution which occurs within each of the synapses of the network. After baking, the network is then retrained to compensate for the change resulting from the charge redistribution. The baking and retraining steps may be successively repeated to increase the accuracy of the neural network to any desired level.
Abstract:
Improved processing which permits the simultaneous fabrication of block erasable flash EPROM cells and individually erasable EEPROM cells. A polysilicon finger extends from the floating gate of the EEPROM cell over a tunnel oxide region. Doped regions are formed under this finger by implanting dopants in alignment with the finger during the implantation of the source and drain regions for the cells and then driving the dopant under the finger. The arsenic dopant used to form the source and drain regions for the cells is used to form the doped regions along with the phosphorus dopant used for the source region of the flash EPROM cells.