Abstract:
An exposure mask for forming a G-type active region with a double patterning technology includes a bar shaped first light-blocking pattern to define an I-type active region, and an island shaped second light-blocking pattern to define a bit line contact region. The first light-blocking pattern and the second light-blocking pattern are arranged alternately.
Abstract:
A method for forming a semiconductor device includes forming a bit line contact region with a line pattern and then performing a process to form a bit line so that a multi-layered bit line contact is expended, thereby preventing a short between bit line contact plugs and improving the process margin of semiconductor devices and the reliability of semiconductor devices.
Abstract:
A method of forming a pattern of a semiconductor device comprises forming a first hard mask film, a first resist film, and a second hard mask film over an underlying layer of a semiconductor substrate; forming a second resist pattern over the second hard mask film; etching the second hard mask film using the second resist pattern as an etching mask to form a second hard mask pattern; performing an ion-implanting process on the first resist film with the second hard mask pattern as an ion implanting mask to form an ion implanting layer in a portion of the first resist film, and selectively etching the first resist film with the second hard mask pattern and an ion implanting layer as an etching mask to form a first resist pattern.
Abstract:
A method for forming a semiconductor device includes forming a bit line contact region with a line pattern and then performing a process to form a bit line so that a multi-layered bit line contact is expended, thereby preventing a short between bit line contact plugs and improving the process margin of semiconductor devices and the reliability of semiconductor devices.
Abstract:
The present invention relates to a method for fabricating a recessed gate structure. The method includes the steps of: selectively etching a substrate to form a plurality of openings; forming a gate oxide layer on the openings and the substrate; forming a first conductive silicon layer on the gate oxide layer to form a plurality of valleys at a height equal to or greater than a thickness remaining after an intended pattern is formed; planarizing the first conductive silicon layer until the thickness remaining after the intended pattern formation is obtained, so that the valleys are removed; forming a second conductive layer on a planarized first conductive silicon layer; and selectively etching the second conductive layer, the first conductive silicon layer and the gate oxide layer to form a plurality of the recessed gate structures.
Abstract:
Disclosed are a memory device and a method for fabricating the same. The memory device includes: a substrate provided with a trench; a bit line contact junction formed beneath the trench; a plurality of storage node contact junctions formed outside the trench; and a plurality of gate structures each being formed on the substrate disposed between the bit line contact junction and one of the storage node contact junctions. Each sidewall of the trench becomes a part of the individual channels and thus, channel lengths of the transistors in the cell region become elongated. Accordingly, the storage node contact junctions have a decreased level of leakage currents, thereby increasing data retention time.
Abstract:
A semiconductor memory device and a method for fabricating the same. Particularly, the semiconductor memory device includes at least two capacitors to decrease the thickness of an insulation layer and increase the size of each capacitor, wherein the thickness of the insulation layer and the size of the capacitor are factors for increasing parasitic capacitance and leakage currents. Also, the two capacitors are arranged diagonally, thereby widening the width of each capacitor formed. Furthermore, in forming double capacitors according to the preferred embodiment of the present invention, an additional reticle is not required to form the contact holes for each capacitor due to their inverted disposition relationship.
Abstract:
An exposure mask for forming a G-type active region with a double patterning technology includes a bar shaped first light-blocking pattern to define an I-type active region, and an island shaped second light-blocking pattern to define a bit line contact region. The first light-blocking pattern and the second light-blocking pattern are arranged alternately.
Abstract:
A method of forming a pattern of a semiconductor device comprises forming a first hard mask film, a first resist film, and a second hard mask film over an underlying layer of a semiconductor substrate; forming a second resist pattern over the second hard mask film; etching the second hard mask film using the second resist pattern as an etching mask to form a second hard mask pattern; performing an ion-implanting process on the first resist film with the second hard mask pattern as an ion implanting mask to form an ion implanting layer in a portion of the first resist film, and selectively etching the first resist film with the second hard mask pattern and an ion implanting layer as an etching mask to form a first resist pattern.
Abstract:
Disclosed are a memory device and a method for fabricating the same. The memory device includes: a substrate provided with a trench; a bit line contact junction formed beneath the trench; a plurality of storage node contact junctions formed outside the trench; and a plurality of gate structures each being formed on the substrate disposed between the bit line contact junction and one of the storage node contact junctions. Each sidewall of the trench becomes a part of the individual channels and thus, channel lengths of the transistors in the cell region become elongated. Accordingly, the storage node contact junctions have a decreased level of leakage currents, thereby increasing data retention time.