Abstract:
Each ECU transmits a frame to a frame generator. Then, the frame generator decomposes data contained in the received frame and then stores the data into a buffer memory, for each message type. The frame generator generates a message containing data to be transmitted to each ECU, and then transmits the message. Based on the state of a signal indicating the electric power supply status, the frame generator controls the permission or non-permission of transmission processing such that frame transmission is not performed to the ECU to which electric power supply from an electric power supply control device. When any communication part has received an abnormal frame, the frame generator does not include data contained in frames received afterward by the communication part, into a frame generated for other communication parts.
Abstract:
In a network in which a plurality of ECUs are connected to one another with a common bus, one or more slots are allocated to each ECU in advance, and the plurality of ECUs cyclically transmit messages in an order prescribed in relation to the slots. When each ECU transmits the message related to one slot, each ECU creates and transmits a message including data to be transmitted to other ECUs, and information representing respectively a success/failure of the message reception related to other slots. Each ECU checks information of ACK field included in a message received during one cycle from message transmission related to one slot to a next message transmission related to said one slot. When the message related to one slot is not accurately received by the other ECUs, retransmits the message in the next transmission related to said one slot.
Abstract:
Each ECU transmits a frame to a frame generator. Then, the frame generator decomposes data contained in the received frame and then stores the data into a buffer memory, for each message type. The frame generator generates a message containing data to be transmitted to each ECU, and then transmits the message. In accordance with the state of a signal indicating the electric power supply status, the frame generator controls the permission or non-permission of transmission processing such that frame transmission is not performed to the ECU to which electric power supply from an electric power supply control device. When any communication part has received an abnormal frame, the frame generator does not include data contained in frames received afterward by the communication part, into a frame generated for other communication parts.
Abstract:
A power line communication system is provided in which the influence of the impulsive noise unexpectedly generated on a power line which is a communication medium can be reduced according to the characteristics of the impulsive noise by an existing method and power line communication can be realized without a hindrance. A transmitter is constituted by: a modulator for conveying a LIN data signal by a power line; a filter that allows a signal of a predetermined band to pass therethrough; and a sinusoidal wave outputter (sinusoidal wave in the figure). In contrast, the receiver is constituted by the sinusoidal wave outputter, the filter and a demodulator that performs demodulation. To the power line, a limiter that limits the amplitude of the propagating signal to a predetermined amplitude (reception signal amplitude) is connected.
Abstract:
In a network in which a plurality of ECUs are connected to one another with a common bus, one or more slots are allocated to each ECU in advance, and the plurality of ECUs cyclically transmit messages in an order prescribed in relation to the slots. When each ECU transmits the message related to one slot, each ECU creates and transmits a message including data to be transmitted to other ECUs, and information representing respectively a success/failure of the message reception related to other slots. Each ECU checks information of ACK field included in a message received during one cycle from message transmission related to one slot to a next message transmission related to said one slot. When the message related to one slot is not accurately received by the other ECUs, retransmits the message in the next transmission related to said one slot.
Abstract:
A vehicle communication system comprising a relay connection unit for relaying one or more buses connected to a message transmitter and a bus connected to a message receiver, wherein the relay connection unit generates new messages on the basis of a plurality of messages received from the message transmitter and transmits the generated messages to the message receiver via the bus, and wherein the number of new messages to be generated is not less than 1, a plurality of the new messages allow the messages for generating each of the messages to be divided into groups, and the plurality of messages which the relay connection unit receives from the message transmitter to generate one new message gradually advance the transmission timing.
Abstract:
It is expected to provide a communication apparatus, relay apparatus, communication system and communication method for effectively performing a communication timing adjustment when a collision has occurred on a communication line, efficiently reducing the communication collision with reducing processing loads on each apparatus, for making each apparatus effectively perform the transmission timing adjustment, and for improving the communication efficiency. ECUs are connected to communication lines with a bus topology. A relay apparatus is connected to the communication lines, obtains a time distribution based on a number of messages transmitted to the communication lines. When the bias occurs in the transmission timings, the relay apparatus transmits an instruction message that instructs to perform the timing adjustment for messages transmitted between the ECUs. In addition, it is determined whether a message to be relayed is held. When it is determined that such a message is held, the instruction message is transmitted.
Abstract:
The present invention provides a vehicle-mounted video communication system being characterized in that the wiring between a plurality of image pickup devices and a plurality of video processing devices can be simplified, the total length of cables can be reduced, and the respective devices can be reduced in size.The vehicle-mounted video communication system is equipped with first to fourth image pickup devices 21, 22, 23 and 24, mounted on a vehicle, for transmitting video data obtained by picking up an image; first to fourth video processing devices 31, 32, 33 and 34 for processing the video data; and a vehicle-mounted video relay device 1 having connection sections connected to the first to fourth image pickup devices 21, 22, 23 and 24 and the first to fourth video processing devices 31, 32, 33 and 34 via communication cables 4a and 4b, and configured to transmit the video data transmitted from the first to fourth image pickup devices 21, 22, 23 and 24 selectively or in a multiplexed sate to the first to fourth video processing devices 31, 32, 33 and 34.
Abstract:
A power line communication system is provided in which the influence of the impulsive noise unexpectedly generated on a power line which is a communication medium can be reduced according to the characteristics of the impulsive noise by an existing method and power line communication can be realized without a hindrance. A transmitter is constituted by: a modulator for conveying a LIN data signal by a power line; a filter that allows a signal of a predetermined band to pass therethrough; and a sinusoidal wave outputter (sinusoidal wave in the figure). In contrast, the receiver is constituted by the sinusoidal wave outputter, the filter and a demodulator that performs demodulation. To the power line, a limiter that limits the amplitude of the propagating signal to a predetermined amplitude (reception signal amplitude) is connected.
Abstract:
For voltage values (observed noise sequence) in an electronic power line (communication medium) which are obtained at a predetermined interval, initial values of noise characteristics based on a statistic of the observed noise sequence itself are decided by a moment method (S301 to S307), the noise characteristics (state transition probabilities and state noise power) for maximization of the likelihood of the observed noise sequence are obtained from the initial values by MAP (Maximum A Posteriori) estimation using a Baum-Welch algorithm (S309 to S312), a state sequence is estimated from the obtained noise characteristics, and an impulsive noise at each time point is detected.