Abstract:
Methods and systems of parasitic sensing are shown and described. The method includes, measuring, at a first time using one or more electrical elements native to a domain, a parameter of a circuit within the domain and measuring, at a second time using the one or more electrical elements native to the domain, the parameter. The method also includes, comparing the parameter measurement from the first time to the parameter measurement at the second time and determining, in response to the comparison, that an activity occurred within the domain.
Abstract:
A medical device system and method allows an arterial bypass graft to be proximally anastomosed to an aorta during a beating heart procedure without substantial loss of blood by use of an endolumenal aorta isolation assembly provided along the distal end portion of an elongate catheter body. The aorta isolation assembly includes proximal and distal portions that are separated by an isolation region and that are adjustable to first and second extended positions, respectively, which are adapted to circumferentially engage the aortic wall and isolate upstream and downstream aspects of an exterior space between the elongate body and the aortic wall. The intermediate region is adapted to be positioned along the proximal anastomosis site such that the distal and proximal portions when adjusted to the first and second extended positions circumferentially engage the aortic wall on upstream and downstream sides of the proximal anastomosis site. Blood flowing within the aorta is thereby isolated from the proximal anastomosis site along the intermediate region and is shunted from an upstream region of the aorta, through the distal port into the flow lumen, proximally along the flow lumen, out from the flow lumen though the proximal port.
Abstract:
A medical device assembly is adapted to isolate the heart from systemic circulation while perfusing oxygenated blood to the systemic arterial circulation during a minimally invasive bypass procedure. The assembly includes an arterial catheter with an external shunt valve which forms an anchor to secure the distal end portion within the aortic arch and which also forms a funnel which shunts antegrade aortic blood flow from the aortic root, into a distal flow port and through an internal flow lumen in the catheter, out an intermediate flow port along the catheter proximally of the anchor, and into the systemic arterial circulation. A distal internal valve is further provided within the internal flow lumen between the distal and intermediate flow ports. The distal internal valve selectively occludes the shunted antegrade aortic blood flow between the distal flow port and the intermediate flow port and isolates the left heart chambers from the systemic arterial circulation. Oxygenated blood may then flow from a cardiopulmonary bypass pump, distally through the internal flow lumen, out the intermediate port. The assembly also includes a venous catheter which aspirates venous blood from the vena cavae and into the cardiopulmonary bypass pump while substantially isolating the right heart chambers from the vena cavae and without circumferentially engaging the internal walls of the vena cavae. Distal and intermediate external valves are positioned along the venous catheter within the superior and inferior vena cava, respectively, and between the sinus venarum into the right atrium and either a distal or intermediate flow port, also respectively. The flow ports communicate with a cardiopulmonary bypass pump through at least one flow lumen through the catheter. Each external valve is adjustable to have an outer diameter which is slightly less than the inner diameter of the respective vena cava so that venous blood is substantially occluded from flowing into the sinus venarum and is instead aspirated into the adjacent flow port. A leakage port may also be provided between the distal and intermediate flow ports. The venous catheter may alternatively include an external valve with a valve member which is adjustable from a first radial position at a discrete location around the catheter's circumference to a radially displaced position within the right atrium.
Abstract:
An extracorporeal support system including an extracorporeal support apparatus and an arterial circulation support catheter. The arterial circulation support catheter includes a blood lumen with a proximal end coupled to extracorporeal support apparatus and a distal end inserted into the blood circulation. A vent lumen has a distal end that crosses the aortic valve into the left ventricle and provides direct venting of the left ventricle through the vent lumen. An arterial circulation support catheter occluding member is positioned either in an interior or at an exterior of the arterial circulation support catheter. A venous circulation support catheter is provided and includes a blood lumen with a proximal end coupled to the extracorporeal support apparatus and a distal end inserted into the blood circulation. A venous circulation support catheter occluding member is included and positioned in an interior or at an exterior of the venous circulation support catheter. The venous circulation support catheter occluding member occludes the superior vena cava and the inferior vena cava.
Abstract:
The present invention relates to a method and system for assessing the risks and/or exposures associated with financial transactions using various statistical and probabilistic techniques. Specifically, the present invention relates to a method and system for identifying plausible sources of error in data used as input to financial risk assessment systems using Bayesian belief networks as a normative diagnostic tool to model relationships between and among inputs/outputs of the risk assessment system and other external factors.
Abstract:
The present invention relates to a method and system for assessing the risks and/or exposures associated with financial transactions using various statistical and probabilistic techniques. Specifically, the present invention relates to a method and system for identifying plausible sources of error in data used as input to financial risk assessment systems using Bayesian belief networks as a normative diagnostic tool to model relationships between and among inputs/outputs of the risk assessment system and other external factors.
Abstract:
In a particular embodiment, a trailer is disclosed that includes a base, a frame extending from the base, and mounting structures coupled to the frame. The mounting structures are adapted to releasably secure an engine, such as an aircraft engine, to the frame such that the engine is secured to the frame and suspended above the base without contacting the base.
Abstract:
A system for performing arthroscopic lavage, directed tissue drying, and the accurate placement of a biocompatible tissue scaffold for the adherence of autologous regenerated cells through a small single port of entry into a joint compartment. The system is comprised of a handpiece having valves for irrigation and suctioning and a dual valve swivel cannula attached to the handpiece. The system includes a mobile cart, high resolution camera, light source, optical coupler, high-resolution monitor, an air compressor to power individually controlled irrigation pumps to deliver irrigation fluid to a handpiece and a vacuum suction console to collect fluid. The system also includes an insufflator to maintain distension immediately following the lavage and to dry tissue in preparation for directed tissue scaffold and regenerative cell placement. The delivery system achieves accurate biocompatible tissue scaffold placement to a specific tissue site or sites within the joint utilizing a small diameter arthroscope for direct visualization while inserting and advancing a grasping instrument or device through one of two valves located on the cannula. While holding the tissue scaffold in the jaws of the grasping device, it is advanced through the cannula lumen and extended beyond the distal tip and placed on the dried tissue site. Removing the grasping device, a catheter is then inserted and advanced through a cannula valve into the lumen and extended beyond the distal tip to the scaffold placed and prepared tissue site. A means of applying torque to the catheter tip further enhances the ability for accurate, exact placement of cells to a specific scaffold receptive tissue site. The cells are then injected into and through the catheter and applied under direct visualization to the scaffold. As comprised, the small single-port system allows a physician to perform the diagnosis, clean the joint space of debris and degradative enzymes using pressurized irrigation and suction, followed by a rapid conversion from a sterile saline fluid distension media to a dry gas CO2 distension media and directed tissue drying, and the accurate placement of a biocompatible tissue scaffold for the adherence and accurate placement of regenerated cells through a catheter to a specific tissue site within a joint.